Menu
Close
Sign up for NPL updates
Close
Sign up for NPL updates

Receive regular emails from NPL to get a glimpse of our activities and see how our experts are informing and influencing scientific debate

Guidance on testing: Standards and TENSTAND​

The revised standards EN 10002 Pt 1 & Pt 5, covering room temperature and elevated tensile testing of metals, now recognise the dominance of computer controlled testing machines, but the systematic technological evidence on which such standards should be based has not been readily available. TENSTAND was set up as a 3-year project, funded by the EU under the programme 'Promoting Competitive & Sustainable Growth', and has addressed this issue through:

  • Development of tensile data sets in ASCII format for validating testing machine software used to determine the relevant material parameters (including Young's modulus, proof stress, tensile strength and elongation at fracture)
  • An intercomparison exercise on testing machine control methodology for tensile testing and numerical modelling activities to provide underpinning information for development of tensile testing standards
  • Work on the measurement of modulus by both tensile testing and dynamic methods, again to provide underpinning information for development of relevant standards

As part of the TENSTAND project, a comprehensive literature review on tensile testing was completed, covering many aspects of tensile testing including recent development in standards, alignment and gripping, testpiece geometry, speed and control of testing, round-robins, data recording, precision and estimating the uncertainty of measurement.

Find out more on the following topics: 

 

Workpackages and reports

The project consisted of four technical activities as detailed below:

  • Literature review of tensile test machine control characteristics, modulus determination and inter-comparison exercises, and data suitable for the assessment of uncertainty.

Download the TENSTAND Test Method Review

  • Evaluation of digital tensile software specification of software, including evaluation of mathematical and graphical methods and preparation of ASCII format tensile data sets of typical engineering alloys. A series of data sets have been generated for validation of test machine and analysis software and for determining the designated material properties such as proof stress, or upper and lower yield stress, tensile strength, and elongation at fracture using testing machine manufacturers' commercial software and in-house university and industrial software.

Download the TENSTAND Software Validation Evaluation

Download details of the ASCII datafiles

  • Modulus measurement methods: Evaluation of methods algorithms used for determining tensile modulus by software validation using ASCII tensile data sets and by mechanical testing. The report compares modulus values determined using alternative techniques.

Download the TENSTAND Modulus Measurement Methods report

  • Evaluation of machine control characteristics: Work was carried out to examine the influence of test machine control, i.e. permitted speed changes during the test in the standard, achieved through a test programme using a selection of materials, including the Certified Tensile Reference Material CRM661, and at other industrial relevant materials.

Download the TENSTAND Machine Control Tests report

 

ASCII data files

These ASCII formatted data sets have been developed for the validation of tensile testing machine software, and for the determination of materials parameters by comparison with agreed values established through the TENSTAND intercomparison.

Files can be downloaded as a complete set by clicking the link at the bottom of the following table:

File Material Tensile behaviour
01 Nimonic 75, CRM Monotonic yielding
06 Nimonic 75, CRM Monotonic yielding
10 13% Mn Steel High work hardening
13 S355 Structural steel Upper and lower yield
17 316L Stainless steel Monotonic yielding
22 Tin coated packaging steel Stress softening
30 Sheet steel - DX56 Low work hardening
38 Aluminium sheet - hard AA5182 Stepped yielding
42 Aluminium sheet - soft AA1050 Non-linear
46 Aluminium sheet - soft AA5182 Serrated yielding
50 Sheet steel - DX56 Low work hardening
53 Sheet steel - ZStE Upper and lower yield
57 Synthetic data Monotonic yielding
61 Synthetic data with 0.5% noise Monotonic yielding
63 Synthetic data with 1% noise Monotonic yielding

Access the whole set of datafiles - Zip file


Please note: The data sets are to be used in conjunction with the report on the tensile testing software intercomparison, where agreed values and issues related to the analysis of the data are given.

Download the TENSTAND Software Validation Evaluation

 

Partners

Organisation Country Contact Activity
National Physical Laboratory

UK

  Research & Testing
INSTRON UK Ian McEnteggart Testing Machine Manufacturer
BAM Germany Hellmuth Klingelhoffer Research & Testing
ZWICK Germany Hermann Bloching Testing Machine Manufacturer
Denison-Mayes (DMG) UK Simon Willett Testing Machine Manufacturer
Thyssen Krup Stahl (TKS) Germany Michael Borsutzki Steel Producer
USINOR (SOLLAC) France Jean-Luc Geoffroy Steel Producer
Corus   Stuart Sotheran Steel Producer
Hydro Aluminium RDB   Johannes Aegerter Aluminium Producer
ISQ Portugal Carlos Pinto Research & Testing
Dept of Mech Eng, University of Strathclyde UK Tom Gray Education & Research
Dept Mech & Manufacturing Eng, Trinity College, Dublin Eire Michael Murphy Education & Research

Don’t see what you are looking for? Our diverse skill set enables us to provide bespoke solutions. Please contact us to discuss your requirements.

Contact us

Find out more about NPL’s research on Mechanical testing

Work with us

Our research and measurement solutions support innovation and product development. We work with companies to deliver business advantage and commercial success.
Contact our Customer Services team on +44 20 8943 7070