Menu
Close
Measurement for our planet
Close
Measurement for our planet

M4R has helped more than 400 UK companies accelerate innovation and bring confidence to decision making and investment.
How can we help you?

Paul Brewer

Paul Brewer

NPL Fellow

Paul Brewer is an NPL Fellow and Head of Science for atmospheric metrology, leading a team making advances in atmospheric chemistry, air pollution monitoring and the quality assurance of emerging fuels. He obtained a PhD in Physical Chemistry from Imperial College and a 1st Class Master of Chemistry degree from the University of Southampton. Since then he has worked for NPL. He is the chair of the CIPM Consultative Committee for Amount of Substance Gas Analysis Working Group, which oversees the comparability of gas analysis measurements between National Metrology Institutes worldwide. He represents NPL at the WMO Global Atmosphere Watch, providing the Central Calibration Laboratory for nitrogen monoxide and non-methane hydrocarbons and acts as an international accreditation technical expert for gas analysis.

Paul is a visiting Professor in the School of Chemistry at the University of Bristol.
He has made a major contribution to the scientific literature with more than 70 peer-reviewed publications. He is a Fellow and Chartered Chemist of the Royal Society of Chemistry.

Current interests

Paul’s main research focus is on underpinning composition and isotope ratio measurements of key components governing atmospheric processes. He is recognised internationally for the development of gas reference materials with unprecedented uncertainties and advances in understanding the chemistry of components in the gas phase, their stability and behaviour at the interface with storage media. He has developed the first synthetic carbon dioxide and methane reference materials with an ambient isotopic composition for addressing commutability issues and widespread traceability, high precision analytical methods for their validation and novel preparation approaches to reduce the influence of adsorption on measurement uncertainty.
 
Paul is leading international efforts towards establishing a robust and first time infrastructure for SI traceable gas phase reference materials for isotope ratio of carbon dioxide and methane for source apportionment. This will solve the demand from the advent of commercial optical spectroscopy and issues in realising the scale which have existed for several decades. This includes an initiative on absolute isotope ratio measurements to put carbon dioxide isotope metrology on an SI basis for the first time, by addressing the issue of mass bias in isotope ratio mass spectrometry from various parameters, such as the isotope selectivity of the ionisation process. This science will resolve a long-standing detailed technical problem and traceability exception.  This work is essential to enable governments to develop accurate emission inventories and models to comply with climate legislation, challenge and inform new policy, improve abatement strategies and mitigate emissions.
 
Paul pioneered the world’s first facility for providing traceable measurements of water vapour transmission rate of high performance barrier materials for encapsulating plastic electronics. In 2018 this was recognised by the Royal Society of Chemistry’s Industrial Analytical Award.
 
Paul is responsible for new cutting edge research initiatives at NPL towards decarbonisation and enabling the energy transition. His department has established the world’s first accredited service for hydrogen purity which will enable the introduction of hydrogen fuel cell vehicles and hydrogen injection into the national grid.

Email Paul Brewer

Selected recent publications

Brewer PJ, Brown RJC, Miller MN, Minarro MD, Murugan A, Milton MJT, Rhoderick GC, Preparation and Validation of Fully Synthetic Standard Gas Mixtures with Atmospheric Isotopic Composition for Global CO2 and CH4 Monitoring, Analytical Chemistry86, 1887, (2014).

Minarro, MD, Brewer, PJ, Brown RJC, Persijn S, van Wijk J, Nieuwenkamp G; Baldan A; Kaiser C, Sutour C, Mace T, Skundric N, Tarhan T, Zero Gas Reference Standards, Analytical Methods8, 3014, (2016).

Sagade A A, Aria A I, Edge S, Melgari P, Gieseking B, Bayer B C, Meyer J C, Bird D, Brewer P J, and Hofmann S, Graphene-based nanolaminates as ultra-high permeation Barriers, Nature: 2D Materials and Applications, 1:35, (2017).

Brewer P J , Brown R J C, Resner K V, Hill-Pearce R E, Worton D R, Allen N D C, Blakley K C, Benucci D, and Ellison M R, Influence of Pressure on the Composition of Gaseous Reference Materials, Analytical Chemistry90 (5), 3490, (2018).

Brewer PJ, Brown R J C, Tarasova O A, Hall B, Rhoderick G C and Wielgosz R I, Underpinning measurements in gas analysis: scales and the SI,Metrologia55, S174, (2018).

Allen N D C, Worton D R, Brewer P J, Pascale C, Niederhauser B, The importance of cylinder passivation chemistry for preparation and long-term stability of multicomponent monoterpene primary reference materials, Atmospheric Measurement Techniques116429, (2018).

Hill-Pearce R E, Resner K V, Worton D R, Brewer P J, A synthetic zero air reference material, Analytical Chemistry, Analytical Chemistry, 91 (3), pp 1974–1979, (2019).

Hodges J T, Viallon J, Brewer P J, Drouin B J, Gorshelev V, Janssen V, Lee S, Possolo A, Smith M A H, Walden J and Wielgosz R I, Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on literature review, Metrologia, 56 034001, (2019).

Brewer P J, Brown, R J C, Mussell Webber E, van Aswegen S, Ward M K M, Hill-Pearce R E, Worton D R, Breakthrough in negating the impact of adsorption in gas reference materials, Analytical Chemistry, 91 (8), pp 5310-5315, (2019).

Brewer P J, Kim J, Lee S, Tarasova O A, Viallon J, Flores E, Wielgosz R I, Shimosaka T, Assonov S, Allison C E, van der Veen A M H, Hall B, Crotwell A M, Rhoderick G C, Hodges J T, Mohn J, Zellweger C, Moossen H, Ebert V, Griffith D W T, Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations, Metrologia, 56, 034006, (2019).