National Physical Laboratory

NPL EXAMPLE CERTIFICATE

Sullivan IVD Type F9200

Statement of Uncertainties.

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor, k, providing a coverage probability of approximately 95%. These uncertainties apply only to the measured values and do not carry any implication regarding the long-term stability of the instrument.

The uncertainty evaluation has been carried out in accordance with UKAS requirements.
The reported uncertainties in the values given are: -

Tables	Frequency	In-Phase Voltage Ratio Uncertainty	k-factor	Quadrature Error Uncertainty	k-factor
I \& II	1 kHz	± 0.00000006	2.0	$\pm 7 \times 10^{-8}$ of input	2.0

Method

The instrument was calibrated with a sinusoidal voltage applied between the ratio winding terminals marked ' H ' and ' L ' on the left hand side of the instrument. The terminals marked 'MAGNETISING INPUT H and L' were energised via a separate cable from the source to ensure that no magnetising currents flow in the measurement circuit.

The ratio winding terminal marked ' L ' was connected to the case terminal marked \mp and to mains earth throughout the tests.

The values of In-Phase Voltage Ratio and Quadrature Error given refer to the operation of the divider as a three - terminal device. The output was measured between the terminal marked ' O ' and the ratio winding terminal marked ' L ' on the left hand side of the instrument.

The sign of the Quadrature Error is given as positive when the output voltage was found to be in advance of the input voltage.

Example Results -for the first 3 Decades

Table I

Input voltage 25 V (RMS) at 1 kHz

Dial Setting	In-Phase Voltage Ratio	Quadrature Error (x 10^{-8} of Input)
9999999(10)	1.00000002	-7
90000000	0.90000000	12
80000000	0.79999996	30
70000000	0.69999996	30
60000000	0.59999997	17
50000000	0.49999997	1
40000000	0.39999998	-11
30000000	0.30000001	-29
20000000	0.20000001	-30
10000000	0.10000002	-10
0999999(10)	0.10000002	-31
09000000	0.09000001	-34
08000000	0.08000001	-32
07000000	0.07000001	-27
06000000	0.06000001	-20
05000000	0.05000001	-13
04000000	0.04000000	-5
03000000	0.03000000	1
02000000	0.02000000	5
01000000	0.01000000	6
0099999(10)	0.01000000	5
00900000	0.00900001	4
00800000	0.00800001	4
00700000	0.00700001	4
00600000	0.00600000	4
00500000	0.00500000	4
00400000	0.00400000	4
00300000	0.00300000	4
00200000	0.00200000	4
00100000	0.00100000	3
0009999(10)	0.00099998	2
00000000	0.00000000	1

Example Results for 11 section

Table II

Input voltage 25 V (RMS) at 1 kHz

Dial Setting	In-Phase Voltage Ratio	Quadrature Error (x 10^{-8} of Input)
90909090	0.90909093	-4
81818181	0.81818181	-8
72727272	0.72727270	-17
63636363	0.63636361	-31
54545454	0.54545452	-43
45454545	0.45454543	-52
36363636	0.36363635	-60
27272727	0.27272728	-63
18181818	0.18181819	-53
09090909	0.09090910	-29

