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1. Definitions 
 
The following industry-acknowledged terms and definitions apply in this document.   
 
automated driving system (ADS)  
hardware and software that are collectively capable of performing the dynamic driving task on a 
sustained basis, regardless of whether it is limited to a specific operational design domain   
  
automated driving system entity (ADSE)  
organization or individual that puts an automated driving system forward for authorization for use 
and is responsible for its safety 
 
Connected and Automated vehicle (CAV) 
a vehicle designed or adapted to be capable, in at least some circumstances or situations, of safely 
driving itself on roads or other public places in Great Britain. 
  
Dynamic driving task (DDT)  
real-time operational and tactical functions required to operate a vehicle safely in on-road traffic  
  
edge case  
rare but plausible independent parameter value within a scenario  
  
operational design domain (ODD)  
operating conditions under which a given driving automation system or feature thereof is specifically 
designed to function  
  
scenario  
description of a driving situation that includes the pertinent actors, environment, objectives and 
sequences of events  
  
sensor fusion  
process of combining information from multiple sensor types in order to improve performance over 
that obtainable from a single sensor type  
  
simulation  
computer generated environments used to test components, systems or human behaviours  
  
validation  
means by which it is proven beyond reasonable doubt that an end product meets its design intent and 
stated performance specification  
  
vehicle  
motorised, wheeled conveyance that is mechanically propelled and intended or adapted for use on 
roads  
  
verification  
evaluation of a system to prove that it meets all its specified requirements at a particular stage of its 
development  
  
For this document, the following terms have the specified definitions:   
  
Controlled Environmental Test Facility (CETF)  
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also known as CETF refers to a planned large-scale (in terms of size) controlled environment test 
facility where weather conditions (e.g. rain, fog…) are emulated and are to some degree controllable   
 
Framework 
refers to the usable and reliable framework for understanding how well AV sensors perform in 
different weather-related conditions, including when the sensors cannot be relied upon 
  
Real World Weather Testbed 
fully instrumented test range in the outside world.  Includes measurement of all relevant and available 
meteorological variables 
 
Study 
the Study is this report, which constitutes the findings of research undertaken by Met Office and NPL 
to prove the concept for the Framework 
  
Stage 1 
refers to the first stage of the project to produce the Framework, the output of which is the Study 
  
Stage 2 
refers to the second stage of the project to produce the Framework, which is based on adopting the 
recommendations made in the Study 
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2. Introduction 
 
Note:  For consistency the term Connected and Automated Vehicles (CAV) will be used to refer generally 
to Autonomous and Automated vehicles in this document. 
 
With the advent of ‘Automated’ or ‘Self-Driving’ Vehicles, a new paradigm is being created requiring 
entirely new types of tests for the systems which are replacing the human driver. 
 
One key challenge arising from this is the reliance on a range of sensors for safety critical applications 
in CAV.  How these sensors perform and where they might fail must be clearly understood; failure to 
do so may lead to serious safety issues. 1 
 
Having the right tools to determine when sensors will fail is therefore vital for CAV to operate safely.  
The weather is a dominant aspect of the changing conditions that may affect sensors.  This is an 
especially complex challenge and the same need has been observed across regulators and CAV 
developers around the world2, indicating there is an opportunity for the UK to build and demonstrate 
leadership in this area.    
 
Two national agencies, Met Office and National Physical Laboratory have undertaken this research 
project  (‘The Study’) on behalf of CCAV to specify what those tools should be: a usable and reliable 
framework for understanding how well sensors perform in different weather-related conditions, 
including when the sensors cannot be relied upon (‘The Framework’).  When fully developed, this 
Framework will support validation, safety assurance and simulation testing of CAV, across the UK.   
NPL and Met Office, as neutral agencies and leaders in their respective fields of Metrology and 
Meteorology, have a vital coordinating role in developing this work. 
 
An underlying principle of this Study and the subsequent actions to adopt its recommendations, is to 
ensure the Framework’s usability and acceptability, early in its development; this is being achieved 
through engagement and collaboration across current UK stakeholders and trials, under the direction 
of CCAV.  The Study includes a description of engagement activities and findings to date. 
 
The study recommends creating an integrated Ecosystem of Test environments, where linked tests 
of different levels of complexity are conducted on sensors and full systems, to achieve the required 
level of confidence in sensor performance; and this being subsequently adopted as a feature of CAV 
Safety Assurance.  This will be enabled through a combination of existing and newly developed test 
capabilities.  
 
This ‘Test Ecosystem’ will be underpinned by a series of critical success factors, defined in the Study, 
as well a minimum set of measurements for each type of test and an entirely new Taxonomy for 
weather impact on sensors. This will also involve the development of new testbed infrastructure. 
 
Full recommendations can be found in Section 5.  Adoption of the recommendations must be 
undertaken in close collaboration with industry, testbeds and regulators to ensure success. 
 

 
 

 
1 Thatcham.org, 2020, https://www.thatcham.org/thatcham-research-and-association-of-british-insurers-urge-
government-to-revise-plans-for-introduction-of-automated-lane-keeping-systems-to-ensure-road-safety/  
2 AAA, 2019, Automatic Emergency Braking with Pedestrian detection,  , 
https://www.aaa.com/AAA/common/aar/files/Research-Report-Pedestrian-Detection.pdf  

https://www.thatcham.org/thatcham-research-and-association-of-british-insurers-urge-government-to-revise-plans-for-introduction-of-automated-lane-keeping-systems-to-ensure-road-safety/
https://www.thatcham.org/thatcham-research-and-association-of-british-insurers-urge-government-to-revise-plans-for-introduction-of-automated-lane-keeping-systems-to-ensure-road-safety/
https://www.aaa.com/AAA/common/aar/files/Research-Report-Pedestrian-Detection.pdf
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3. Study Overview  
 
This section describes the background and need for the Study, as well as the relevance to the safety 
of CAV’s.  The objectives and scope of the Study are described also. 

 

3.1. Context of the study 
All CAV sensors have their performance reduced by adverse weather to some extent or another and 
so weather information is a key consideration in the development and operation of CAVs, as well as 
other intelligent mobility solutions.   This reduction in performance is often the result of complex 
interactions between the electromagnetic spectrum used by the sensors and the weather at its finest 
scales e.g. individual raindrops.  Managing the implications of this complexity effectively and 
pragmatically offers the opportunity of developing a world-leading test ecosystem and avoiding 
wasted investment in capability. 
 

Figure 1. Impact of weather types on sensors using rain as an example.  The red dots are indicative 
of where the impact of rainfall might be considered.  From left to right these are: water film on the 
target vehicle, attenuation/glare from road spray, attenuation/glare/backscatter from falling rain, 
water film on the sensor, net impact on processed sensor output, the impact on the ADS and finally the 
impact of rain on infrastructure. 
 
The recent Feasibility Study produced by NPL and Connected Places Catapult for CCAV on Performance 
Testing for CAV Sensors 3 identified the following: 

• There is a need for a more structured and quantitative approach that provides a traceable link 
from observable weather to CAV impacts at the vehicle, fleet and network level; and in turn to 
understand and validate sensor performance and downstream AI-based perception systems 
under different conditions. 

• There is a need to develop and agree common standards and taxonomies for different types of 
weather. Moreover, a new technical language is only useful if it is widely used in the field.   

 
3 NPL and Connected Places Catapult, 2020, Performance Testing for Sensors in Connected and Autonomous Vehicles: 
Feasibility Study  
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• Industry has acknowledged the importance of developing a set of common methodologies and 
definitions for characterising sensor performance under different conditions.   

 
The Feasibility Study recommended the development of a usable and reliable Framework for 
characterising sensor performance in different weather-related conditions, including the ability to 
assess performance outside the design envelope (‘The Framework’), along with the creation of 
associated physical test infrastructure.  Uses of this Framework include validation, safety assurance 
and simulation testing of CAV.   This would support a standardised approach to testing CAV in the UK 
and underpin future sensor testing infrastructure, whilst positioning the UK as a leader in this space 
internationally.  
 
This Study is the first stage of the development of the Framework (Stage 1) and serves as a proof of 
concept of the Framework.  To deliver the Framework in full - to the point of industry deployment - 
will require a subsequent project – Stage 2 (see Section 9). The focus of research for the Framework 
development is as follows:  

• Characterisation of the relationship between observable weather phenomena and CAV system 
impacts at the “traffic scale”, in order to adequately inform the ODD  

• Development of a UK (and world) climatology of edge case weather, fully expressed in terms of 
CAV impacts  

• Development of meteorologically based CAV sensor (and AI) performance standards  

• Development of test protocols that provide a traceable link between CAV standards and real-
world system performance, including the creation of a “CAV meteorological testbed” and 
reference virtual environments  

• Make best use of ‘traditional’ meteorological data and CAV sensor data and insights to ensure the 
safe and efficient operation of individual CAV vehicles and contribute to the enhancement of the 
UK National Meteorological Service for the wider public good  

• Development of demonstration meteorological data and consultancy services which might form 
the basis of a future market in CAV information services  

 
A fundamental underlying principal of the research approach is that: The propagation of uncertainties 
in sensor performance through to the performance of perception algorithms and autonomous 
decision making must be understood and then reflected in the setting of pragmatic industry 
standards.  Through direct engagement with current UK stakeholders and trials, this will ensure the 
framework’s usability and acceptability, early in its development.    
 

3.2. Relation to existing Safety Activities 
Demonstrating safety is key, not only for legislative acceptance of CAV, but also for public confidence 
and uptake of the technology. Various UK bodies have generated guidance and tools to support this 
demonstration and in 2019, the UK Government announced the development of an assurance system 
CAV PASS, to ensure self-driving vehicles are safe and secure by design and minimise any defects 
ahead of their testing, sale and wider deployment on UK roads. The work reported here feeds into 
several aspects of these activities. 
 
The CertiCAV4 project aims to develop a framework to define and assess the safety of advanced levels 
of automation, along with demonstrations of the critical aspects of this framework. Their overall vision 
is that the framework will support scenario-based testing, including a curated database of 
parameterised scenarios for both real and virtual tests that will be used to seek regulatory approval.  
 
The Study provides two key clarifications to support this approach. The first clarification is a 
discussion of the challenges associated with parameterising weather within these scenarios, and in 

 
4 Connected Places Catapult, 2020, https://cp.catapult.org.uk/events/the-certicav-safety-assurance-framework-for-cavs-
consultation-workshop/  

https://cp.catapult.org.uk/events/the-certicav-safety-assurance-framework-for-cavs-consultation-workshop/
https://cp.catapult.org.uk/events/the-certicav-safety-assurance-framework-for-cavs-consultation-workshop/


NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

particular explains that defining exactly what (for instance) “heavy rain” means, requires a 
combination of spatial, temporal, and intensity statements that will potentially affect the vehicle, its 
sensors, and the surrounding infrastructure in complex and interlinked ways. 
 
The second clarification is the characterisation framework proposed in this report, which provides a 
quantified and traceable approach to ensuring that the models of the vehicle sensor suite used in the 
virtual testing scenarios are an accurate reflection of the true performance of the sensor suite under 
different weather conditions. Use of the framework of measurements defined in this document will 
provide appropriate data for development of sensor models that do not rely on idealised assumptions 
about sensor performance in (for instance) rainy conditions, but instead can capture performance 
degradation and associated uncertainty in a way that can be reproduced in the virtual testing 
environment. 
 
Another significant safety activity is taking place under the aegis of BSI, in the development of a small 
number of complementary Publicly Available Specifications (PASs) aimed at supporting the safe 
trialling and introduction of AVs.   This study is fully aligned with these: 
 
Firstly, the production of “PAS 1880:20205, Guidelines for developing and assessing control systems 
for automated vehicles” has defined a structure for assuring the safety of the various aspects of AV 
systems. The work reported here is particularly relevant to what PAS 1880 terms “sensing operations”, 
which state that safety of sensing operations requires that: 
“It is demonstrated that, throughout the mission, the AV: 
a)  is able to determine that it is operating in compliance with its ODDs; and 
b)  is able to provide the data required by the AV planning operations.” 
 
Secondly, “PAS 1883:2020, Operational Design Domain (ODD) taxonomy for an automated driving 
system (ADS) – Specification”6, includes the first attempt at describing the operating environment for 
CAVs.    This study contributed much of the wording to the weather elements of the taxonomy and 
the framework defined in this document provides a structured approach to gathering evidence that 
the sensing operations are in compliance with those weather parameters.  In addition the approach 
is able to identify the weather conditions under which the sensing operations cease to provide 
sufficiently good (i.e. accurate and low uncertainty) data to satisfy the needs of the CAV planning 
operations.  
 
In general, the framework in this document is consistent with much of the existing CAV safety 
projects as it is scenario-driven, evidence-based, and provides quantified uncertainties to feed into 
a risk assessment approach. It provides a traceable methodology to assess complex systems reacting 
to complex conditions.   

 

3.3. Study Objective and scope 
The objective of this study is to prove the concept of, and create an evidence-based specification for, 
the Framework.    
 
The Study has, therefore, focussed on rainfall as an exemplar, and its impact on a single KPI (maximum 
range) for two sensors (lidar and mm-wave radar) is demonstrated.  By drawing on existing knowledge 
from metrology and meteorology, the nature of the underlying complexity is demonstrated along with 
how it can be managed within the test framework.  Although a single weather element (rain) is 
considered for the Study, other weather impact pathways have been identified as part of the industry 
engagement process. 
 

 
5 BSI, 2020, https://www.bsigroup.com/en-GB/CAV/pas-1880/  
6 BSI, 2020, https://www.bsigroup.com/en-GB/CAV/pas-1883/  

https://www.bsigroup.com/en-GB/CAV/pas-1880/
https://www.bsigroup.com/en-GB/CAV/pas-1883/
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The study has achieved the objective as follows: 

• The findings from the research have allowed the participants to understand and articulate the 
nature of the challenge of weather-related sensor degradation and confirmed that industry sees 
this as a major challenge which needs to be addressed   

• The project has demonstrated how the complexity demands that a range of test approaches must 
be used in concert in order to characterise sensor performance to an acceptable level of 
uncertainty 

• Successful and meaningful engagement across different industry and regulatory stakeholder 
groups has taken place to ensure the framework is relevant and will have buy in from all 
stakeholders.  The engagement process, which has included involvement in advisory bodies to the 
development of BSI: PAS for CAV and MUSICC7 and CertiCAV initiatives, has demonstrated the 
need for bottom up research and to inform the development of regulation and approvals  

• One significant impact has been raising awareness of the role of uncertainties and how these 
relate to the definition and operational use of the ODD, in particular the description of rainfall in 
the ODD taxonomy in PAS 1883 as described earlier 

• The project has enabled the definition of a generalized framework structure to address this, which 
has gained acceptance from industry stakeholders, and which is aligned to current programmes 
to develop standards for CAV assurance and testing    

• Undertaking this first stage project has provided a clear definition of what is required for Stage 2 
- the development of the full framework – and reduced the risk to that stage, which will in turn 
support successful deployment of CAV in the UK 
 

3.4. Out of Scope 
This report does not explicitly discuss testing of AI systems in any great level of detail. AI systems, 
usually machine learning algorithms, are used in CAVs to control the vehicle but are also used on 
individual sensors to identify objects. Testing of, reliability of, and evaluation of the uncertainty 
associated with the results of machine learning algorithms is an ongoing area of academic research. 
The topic is too complex to address within this project, but some aspects are discussed in brief in 
section 8.5. 
 
This limitation is related to the concept of functional testing, discussed in more detail in section 6.7. 
The aim of much of the framework proposed here is to characterise the response of the sensing 
elements of the sensor system (i.e. the parts of the sensor that send and receive the signal) under 
different weather conditions. This demarcation at the lower levels of testing supports root cause 
analysis at the higher levels of testing, so that progress to rectify problems can be made more 
quickly. If a sensor fails to identify a car in the rain during a test, but the sensing elements of that 
sensor have been shown to have adequate performance in the rain, then we can have confidence 
that the problems lies with the software not the hardware and can work to rectify the problem 
accordingly. 
 
It is acknowledged that access to the raw signal may be seen as undesirable by sensor manufacturers, 
but it will enable more rapid product development and product acceptance if this base case testing 
can be carried out easily.  

 

3.5. Study Activities  
The working approach has been to establish the minimum viable end-to-end thread, sharing this 
with stakeholders at the earliest opportunity, and then progressively building additional depth and 
capabilities incrementally. 

 

 
7 Connected Places catapult, 2019, https://cp.catapult.org.uk/case-studies/musicc/  

https://cp.catapult.org.uk/case-studies/musicc/
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3.6. Document Structure 
The document structure follows the evolution of the theoretical approach during the process of 
engagement with industry.   The resulting recommendations (section 5) link to other sections to 
provide more detail on how the recommendations will be fulfilled. 
 
Section 5 and Section 6 - Recommendations and Framework Methodology - are the key sections, 
which describe what is required in terms of process, infrastructure and innovation and provide a 
roadmap to establish a useable and traceable framework for the characterisation of CAV sensors with 
respect to adverse weather.  The subsequent sections, Section 7 and Section 8 provide the evidence 
to support these recommendations and the appendices contain substantial technical information 
related to sections 7 and 8. 
 
Section 9 provides more insight on the range of activities required to deliver the recommendations; 
these would form the basis for more formal planning and resourcing for Stage 2, the development and 
demonstration of the application of the Framework. 
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4. The Industry Context 
 
An underlying principle in the development of the Framework is to ensure its usability and 
acceptability, early in its development; this is being achieved through engagement and 
collaboration across current UK stakeholders and trials, under the guidance of CCAV.   This section and 
the accompanying appendix explain the parameters and process of engagement during the Study. 

 

4.1. Challenge Statements  
The following reflect the main challenges which have been identified through the engagement process 
and which the Study focuses on addressing:  
a) Functional testing alone is not sufficient to validate sensor performance. The Automotive 

industry is a globalized and very influential industry, where the long-established process of 
Vehicle Type Approval is used to confirm that production samples of a design will meet specified 
performance standards.  However, in the past the perception and navigation (i.e. decision making) 
was undertaken by a human which is not part of the vehicle type approval until now –  for 
example, the testing of CAV performance in bad weather will need to characterise impactful 
weather thresholds from the point of view of a sensor, which is not the same as that of a human.  
Furthermore, certification of CAV is expected to depend on the accumulation of multiple pieces 
of evidence that the vehicle performs safely in a set of pre-defined scenarios. The use of an 
evidence chain rather than a single pass/fail test makes it less likely that the vehicle will be 
designed specifically to pass the test rather than to drive safely in general. The scenario set for full 
autonomy is expected to be large, varied, and to vary geographically with common features.  

b) Current simulation environments cannot provide a reliable link to real world testing because 
they have insufficiently defined sensor models.  It is broadly acknowledged8 that the simulation 
(virtual and physical) of automated driving functions is the only practical way to assess the many 
possible scenarios that shall comprise a sensor system design verification plan (DVP). 
Consequently, it is important that a) a computer model of a sensor should accurately represent 
its behaviour under all relevant circumstances, including poor weather; and b) physical simulation 
of driving scenarios should recreate equivalent environmental conditions and be able to do so on 
a repeatable basis.   All uncertainties need to be quantified and then sampled in virtual scenarios. 
(see section on Uncertainty) 

c) ODD Taxonomies which relate to sensor performance degradation are not yet sufficient for 
purpose.  Interactions between sensors and the weather is very complex.  Therefore, a useable 
assurance framework must manage this complexity on behalf of the industry, only exposing it 
where absolutely essential and being clear about what unavoidable uncertainties remain.  The 
framework must relate clearly to ODD taxonomies. For example, weather, using rain as an 
example, is not as simple as “heavy rain”/”rain level 3” etc, because it varies spatially and 
temporally. So, a shower that is “on average” apparently safely within an ODD threshold may 
contain local and short instances of very heavy rain that are outside the ODD.     

 

4.2. Engagement process 
It was - and will continue to be – a core requirement to engage as widely as possible with relevant 
stakeholders, including:  ADS developers; sensor manufacturers; OEMs; test centres, proving grounds; 
simulation operators; regulatory entities and standards bodies.  To date over 50 organisations have 
been involved in the engagement process. 
 
Due to the short timeframe and the disruption caused by the C-19 Pandemic, the engagement process 
has been truncated to two activities: 
 

 
8 Nidhi Kalra, Susan M. Paddock; “Driving to Safety , How Many Miles of Driving Would It Take to Demonstrate 
Autonomous Vehicle Reliability?” RAND Corporation (2016) 
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Activity 1:  Phone interviews.  Using the informal summary, the logic flow on page 1 (see Appendix B), 
which involved  a series of statements, were discussed with each interviewee.  The aim was to identify 
where there was agreement on a statement; and where there wasn’t, to engage in further discussion 
as to alternative reasoning. 
 
Activity 2:  Workshop.  A technically-focused workshop was held on the 5th March 2020 in central 
London with 30 participants, drawn from those who had contributed to interviews.  The workshop 
objectives were to explore how a standardised solution can be developed for reliably characterising 
sensor performance in different weather conditions and to ensure it would be useable by all 
stakeholders.  The workshop focused on discussing problem statements and underlying questions to 
the participants for general round-table discussion. 

 

4.3. Engagement Findings 
A brief summary of common themes and outputs arising from both engagement activities is provided 
below.  The full engagement summary is available in Appendix A. 
 
Stakeholders were asked to consider the statements made in the logical flow in the discussion 
document (Appendix B).  
 
The feedback was that the participants generally agreed with the following: 

• The challenge over modelling weather combinations is significant and the existing models are 
averaged over time and region.  Models of weather impacts on sensors overall are immature 

• It is not just the specified weather event testing (e.g. rain/sun/frost/wind) that is important to 
ensure the safe operation for sensors and systems but also how they deal with (or not) the 
transition between weather states, which can often be a complex combination of weather types   

 
A significant majority of stakeholders asked agreed with the following: 

• Testing (including virtual testing) of CAVs needs to take weather into account.  Hence vehicle test 
specifications, sensor characterisation, and virtual testing environments need to take weather 
into account 

• Better confidence in sensor performance can be achieved by a series of linked tests & 
characterisation exercises at different levels (as per Figure 3) where sensors and full systems are 
tested both in reality and virtually. In this context “reality” may include testing in both the natural 
environment AND user-controlled environmental test facilities 

• Because weather demonstrates significant small-scale variability and sensor response has 
associated uncertainties, uncertainty calculations are critical and must be reflected appropriately 
in the virtual simulation 

 
The key outcome was the general agreement around the principle that linking the right tests could 
help increase overall confidence in test results, indicating a solution for the challenge of how to test 
whether perception systems are providing reliable outputs in different weather conditions.   This 
underpins the approach taken in this Study.  Further, the feedback continues to be gathered and 
updated as the number and range of stakeholders engaged increases. 
 
Further points to highlight: 
a) Another point which was made by those engaged was that three important aspects of an 

“approval” / “verification” / “certification” method for sensors or perception systems must be 
borne in mind when considering the process:  

• Cost: The cost of the process to the Vehicle Manufacturer / ADSE requesting “approval” must 
be reasonable 

• Timing: Assuming that the system meets the requirements, it would be unreasonable for the 
process to delay vehicle development or launch excessively  
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• Unified standards: All the organisations providing certified testing services must conform to 
vehicle sensor safety testing standards which are traceable to the primary established vehicle 
functional safety standards such as ISO 26262 

b) It is important to be able to detect when and how sensor is being impacted. 
c) In setting performance standards, it is essential to safeguard against poor performing systems on 

the road.  One of the challenges in this regard is that much of the type approval for automation 
involves assessment of technical documentation from the manufacturers, which may not contain 
detailed information.  This could be because such information has not been mandated, or because 
there are IP concerns by the manufacturer. 

d) Individual sensor performance testing had to be considered in the overall context of the V shaped 
system design and test (Equivalent of unit/component tests).  An indicative approach was 

discussed, i.e.:  vehicle requirements are x  therefore against known vehicle dynamics define 

the situational awareness requirements  This then defines mix and spec of sensors.    
This V model has been promoted to be the reference model that forms the basis of ISO 262629. 
Although ISO 26262 and its V framework generally reflect accepted practices for ensuring 
automotive safety, fully autonomous vehicles present unique challenges in mapping the technical 
aspects of the vehicle to the V approach which has been summarised by P. Koopman, et.al10  

 
Figure 2: A generic V model (from ISO 26262)   
 
e) Sensors are set to be increasingly relevant to numerous future standards workstreams.  As it 

moves into the next stage, the project should ensure collaboration with other stakeholder groups 
at a committee level to define and agree the methodologies and tools and then propagate them 
through standards organisations and industry bodies.  A particular focus will be given to standards 
bodies.   Subsequent engagement with bodies exploring standards has indicated that, although 
approvals, regulation, testing etc use a top-down definition, to understand the challenges and 
constraints to frame such regulation requires a bottom-up research approach first. 
 
 
 
 
 
 
 

 
9 ISO 26262: 2018 Road Vehicles – functional safety, https://www.iso.org/standard/68383.html  
10 “Challenges in Autonomous Vehicle Testing and Validation”, Philip Koopman & Michael Wagner 

https://www.iso.org/standard/68383.html
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5. Recommendations 
 
The following recommendations have been generated through the combination of learnings derived 
from industry engagement and the outputs from the research and investigation undertaken by NPL 
and Met Office.  Collectively the recommendations form a roadmap to develop and deploy the 
Framework in support of CAV testing and safety assurance activities in the UK.   Therefore, 
coordination and alignment with activities and organisations driving safety assurance and related 
future regulations is paramount.  At the same time, the recommendations also take account of 
industry requirements for any new testing approaches to be accessible, budgetarily practical and not 
undermining their ability to protect IP. This research project has reached a point where there is 
sufficient confidence in following through with the recommendations. 

 

5.1. Create the Ecosystem of Test environments 
A series of linked tests and characterisation exercises at different levels of complexity, where sensors 
and full systems are tested both in reality and virtually, will achieve the required level of confidence 
in sensor performance (The ‘Test Ecosystem’).  This could therefore be adopted as a feature of CAV 
Safety Assurance.   It should be noted that in this context “reality” may include testing in both the 
natural environment and controlled environments where weather conditions are recreated.    
 
The principle is that confidence in sensor and sensor system performance is built up by doing a large 
number of simple tests under controlled conditions (lowest layer), and as the complexity of the tests 
increases, the number of tests required decreases because the lower level tests have given confidence 
in system performance.   

• The information derived from the combination and linking of tests is vital for reliable virtual testing 
of the autonomous system, because virtual testing must reflect the likely variability of the sensor 
responses.  

• Such tests can highlight the gaps in performance that may need to be covered by complementary 
sensor technologies and help to identify conditions under which the complementarity of the 
sensors means the system as a whole is still safe even when the performance of one sensor is 
degraded.  

 
Diagrammatic examples and a description of how the ecosystem could be structured is given in Section 
6.1, with a virtual walkthrough in Section 6.2 
 
The Test Ecosystem must include the elements outlined in the table in section 6.4, where more 
detailed descriptions are provided.  The table demonstrates some of the strengths and weaknesses of 
each environment, which when used in combination, will deliver assurance of the sensor performance 
in the full range of weather scenarios.  It should be noted that whilst, where possible existing facilities 
should be used for testing, some of these environments currently do not exist.  As part of adopting 
this recommendation they will need to be developed (see Section 9).  In particular this includes a Real 
World Weather Testbed and a CETF, where the physical world is emulated.   

 

5.2. Critical Success Factors for the Test Ecosystem 
The following recommended critical success factors are necessary to ensure the Test Ecosystem in 5.1 
will deliver the required confidence in sensor performance.   

• Cost and duration of tests: For a testing regime to be useable it must be affordable to the industry 
and also efficient enough to enable competitive advantage through innovation   

• Traceability: The individual elements of the test environment ecosystem must include linkages 
that ensure that the characterisation information from the different tests can be traced back to 
national standards and combined within a well-defined uncertainty framework.  Traceability is 
key to demonstrating that measurements and characterisation are trustworthy, and for 
international acceptance of standards.  (For more information see Section 6.5)  
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Traceability in this application is an ongoing process rather than a one-off demonstration, and 
requires: 

o Sensor calibration using standard ISO calibration charts, which traces back to standards 
such as ISO 12233:201711, makes the measurements traceable back to national standards 
for sensors such as camera and LiDAR. Calibration targets included in ISO 19206-2:201812 
makes the vehicle radar measurements traceable.  (Section 8) 

o Repetition of the same test across multiple environments, e.g. running the C ETF dry to 
compare to lab tests, simulation of tests in the virtual environment for validation, etc.  

o Periodic use of fully characterised (reference) sensors across environments as well as the 
CAV sensors themselves  

o Use of the same KPIs at all levels of testing to ensure direct comparison is straightforward   
o Sufficient number of tests repeated in the well-controlled environments to ensure 

baseline/ground truth performance is well understood and to obtain repeatable results, 
so that the effects of weather can be well isolated and quantified 

o Data sharing infrastructure and methodologies to enable linking of test data, including 
recommendations for standardisation of data and metadata formats 

• Quantifying uncertainty: Characterising uncertainty of the sensor response with respect to 
weather is critical to ensure informed safety, but also enables decisions to be made about the 
balance of investment across the Test Ecosystem and potentially identifies areas of future focus 
for development of improved sensors.  (Section 6.5) 

• Linkage to the ODD: The characterisation framework must relate unambiguously to the definitions 
of weather within the ODD, such as those being developed in BSI PAS 1883.  In particular, the 
accuracy to which the weather elements of the ODD can be measured when the CAV is in 
operation should directly inform the level of detail to which the characterisation with respect to 
the weather is performed.  This is key to both enabling affordability of the sensor testing and also 
ensuring that the uncertainties in ensuring a CAV is within its specified ODD are fully understood. 
(Section 7.4) 

 

5.3. Defining the Measurements and Equipment for each testbed 
The requisite set of measurements and associated equipment are to be defined for each testbed. The 
measurements for each testbed differ and will be completed in accordance with tests defined in 
Section 6.4.  Measurements are required for the following three areas, with indicative examples 
provided. 

• Meteorological: Basic (traditional) meteorological thermodynamic variables (temperature 
humidity, wind, pressure); rain gauge and operational C-band rainfall radar network to measure 
rainfall rate; particulate/droplet measurements (including disdrometers, fog spectrometer, 
aerosol spectrometer) for hydrometeor size distribution; spectroradiometer for light wavelength 
and amplitude measurements; direct and indirect short and longwave flux measurements.  
Section 7 and Appendix G provide more information relating to Meteorological measurement 
requirements   

• Reference targets: e.g. ISO test charts: Geometric ISO 17850:201513, Resolution and Spatial 
Frequency ISO 12233:2017, may be used for Camera; extruded versions may be suitable for Lidar, 
standard spherical and triangular trihedral type (corner reflector) targets would be suitable for 
radar.  Section 8 and Appendix D provide more information relating to reference targets 

• KPI tests: Attenuation coefficient for interrogating wavelength, noise floor, dynamic range, 
maximum and minimum detectable range, range resolution, angular resolution, field of view, 

 
11 ISO 12233:2017 - Photography — Electronic still picture imaging — Resolution and spatial frequency responses,  
https://www.iso.org/standard/71696.html  
12 ISO 19206-2:2018 - Road vehicles — Test devices for target vehicles, vulnerable road users and other objects, for assessment of active safety 
functions..  https://www.iso.org/standard/63992.html  
13 ISO17850:2015 - Photography — Digital cameras — Geometric distortion (GD) measurements, https://www.iso.org/standard/60819.html  

https://www.iso.org/standard/71696.html
https://www.iso.org/standard/63992.html
https://www.iso.org/standard/60819.html
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target contrast threshold, modulation transfer function probability of detection, probability of 
false alarm. Section 8 and Appendix E provide more information relating to KPIs 

 

5.4. Producing a reliable, structured taxonomy of weather impact pathways  
The Study includes a proposed structure for a tabular (by sensor type and degradation mechanism) 
taxonomy of weather impact pathways, in section 8.2. This is required to enable priority mechanisms 
to be explored early.  Through investigations conducted by Met Office and NPL alongside the industry 
engagement process, it is clear that each weather element provides a range of pathways to sensor 
degradation, often in combination with other weather elements and sometimes as secondary 
mechanisms e.g. spray, films of water on sensor surfaces etc.  Furthermore, there are effects of 
weather on infrastructure, such as water films forming on road signs, that may affect the vehicle’s 
ability to detect or identify common objects.   The Taxonomy will also incorporate data on weather 
mitigation effects on the sensor, where such mitigation technologies are available for testing and can 
be properly characterised. 

 

5.5. Collaboration and Deployment 
This Study was only possible through engagement and collaboration with CAV sector stakeholders.   
To move this forward to the next stage will require deeper and wider collaboration, in particular as 
this progresses closer to implementation, including the formation of an industry steering group.  CCAV 
will need to ensure the relevant parties can be involved in development and deployment of the 
Framework on an equitable basis. 
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6. Framework Methodology:  Confidence in Sensor Performance  
This section describes how the constituent parts of the Framework fit together and how the Test 
Ecosystem works as a whole to deliver the required outputs – i.e. confidence in sensor performance.  
It also provides an overview of the important roles that traceability, uncertainty and correlation play 
in delivering confidence, as well as the relationship between the Framework and Functional testing. 
 

6.1. Overview - The Golden Thread 
The Framework must be relevant to the operational context in which the results will be used. 
Specifically, it must link unambiguously to the ODD.  This study demonstrates that even for a single 
environmental variable such as rainfall, there are many degrees of freedom in the way that sensors 
might respond to a headline parameter in the ODD.   This knowledge is used to inform the design of 
the test system and also constrain it in order to avoid unnecessary investment.  An underlying principle 
of the approach requires that the level of detail in assessing sensor performance with respect to a 
given weather parameter must be proportionate with our ability to measure that parameter when the 
vehicle is on the road. 
 
With the above in mind, the study has adopted an approach of using existing expertise and models in 
novel ways to make high level recommendations about the test ecosystem.   The research approach 
has been to probe some of the key sensitivities to weather sufficiently to make recommendations 
about the components of the ecosystem and next steps with a high level of confidence.  At this point, 
these models should not be considered to be candidate sensor response models for the virtual test 
environment.   The test ecosystem is illustrated in Figure 3 and Figure 4 (below).  Figure 3 shows an 
example of the testing pyramid concept.   

 
Figure 3: An illustrative (only) example of a testing pyramid.  The width of the bars broadly indicates 
the volume of tests of each kind.  (Note it is not a given that the testing regime is sequential from 
bottom to top, and it is expected that information from each type of test will contribute to the 
assurance i.e. it is not a case of pass-fail before passing to the next level) 
 
The principle is that confidence in sensor and sensor system performance is built up by doing a large 
number of simple tests under controlled conditions (lowest layer), and as the complexity of the tests 
increases, the number of tests required decreases because the lower level tests have given confidence 
in system performance.   Confidence in the individual sensors under a variety of operating conditions 
can therefore be built up through repeated in-lab tests, including tests with simulated weather. Tests 
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of systems of sensors on vehicles under controlled conditions build up confidence that the effects of 
vehicle motion, sensor mounting (e.g. occlusion by paint layers etc) and other effects only seen on a 
real vehicle can be characterised; the combination of the lab test data and the on-car test data can be 
used to quantify these effects.  
 
Both of these sets of tests also generate data that will be used within the virtual test environment, 
ensuring that the sensor models within the environment accurately reflect the true system behaviour. 
Finally, full car real world tests can be used to test safe situations and can also be used to validate the 
virtual testing environment by simulating the real-world test and comparing results to reality.  We 
refer to the linking and iteration of all of the tests as the ‘Golden Thread’ 
 
Figure 4 below shows the parts of the ecosystem and how they might link in more detail.  The first 
step in developing the Golden Thread is to define the scope of the combined set of sensor 
performance KPIs and weather scenarios that must be captured. These specifications would use a 
vocabulary similar to that used in section 7.1 and would lead to an unambiguous definition of the 
required information.  
 
 

 
(*Wx = shorthand for weather)  
  
Figure 4: A representation of interlinked test environments for CAV sensors – the figure is explained 
in more detail below 
 
The sensor specifications (section 8) will feed into the definition of the sensor tests, and the weather 
specifications (section 7) will feed into the definition of all the tests. The single sensor tests fall into 
two groups: a set of weather-free tests that are envisaged as being carried out in calibration 
laboratories (circled in purple in figure 4), and a set of simulated (and controllable) weather tests 
envisaged as taking place in a CETF (circled in red in figure 4) and uncontrollable real-world weather 
tests at an external testbed (circled in blue).  The tests of multi-sensor systems would also fall into the 
same groupings and would be carried out in the same facilities.  
 
The full vehicle tests would occur under controlled weather conditions (e.g. a C ETF, which would fall 
into the red circle) or in the real world where the conditions are measured but not controlled (blue 
circle in figure 4). It is expected that the real-world testing will take place in a safe and controlled (i.e. 
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not accessible to the general public) environment such as an outdoor test bed. Access control ensures 
that the test scenario is fully controlled (other than the weather conditions) and is risk-assessed to 
avoid general harm. 
 
The pink circle denotes the virtual test environment. This environment incorporates: the sensor and 
weather scenarios to define its operations parameters; the results of all of the sensor tests for 
development of its sensor models; and the results of the tests under real and simulated weather tests 
to define its weather models and its models of the effects of weather.  
 
Whilst the use of a pyramid in Figure 3 implies a hierarchy and an order of testing, it is important to 
note that information can flow both ways in this pyramid: for instance, if a vehicle test produces 
unexpected performance in the CETF, more single sensor tests may be performed to investigate and 
quantify this phenomenon.    
 
An important consideration for the Golden Thread is that the testing and characterisation of individual 
sensors requires access to raw (or at least minimally processed) data. Some sensors include object 
identification algorithms as standard, but these need to be removed from the initial characterisation 
tests so that the tested sensor is essentially a device that sends and receives a signal. The main reasons 
for this are: 

• Characterising the send/receive characteristics alone improves confidence in the sensor before 
the next stage of sensing and provides an easier route to standardisation of testing   

• The amount of testing required of the full sensor (likely to be more expensive than 
characterisation of the send/receive aspect due to the variety of scenarios that require testing) is 
reduced. If it has been shown that an object identification algorithm can function well with a signal 
that is attenuated by a certain amount, then the root cause of that attenuation does not matter. 
The send/receive system can be characterised under conditions that may cause attenuation, to 
build confidence in the system under those conditions, but the more complex object identification 
system need not be tested 

• Characterisation of the send/receive characteristics simplifies the construction of the sensor 
model for virtual testing because it enables the effects of weather to be moved into the virtual 
testing environment (see sensor model section) 

• If a sensor that has only been tested as a black box fails an on-car test, it is not possible to know 
whether the failure is due to a software problem or a hardware problem, so fault root cause 
analysis becomes more complex and more expensive   

 
 

6.2. Virtual Walkthrough 
This virtual walkthrough shows how the linking of tests can increase confidence in the results.  The 
following walk-through uses the results of a set of calculations based on assumptions that are 
reasonable for real world sensor systems. The details of the calculations are given in Appendix C. 
 
We wish to assess a vehicle fitted with a 77 GHz radar and a 905 nm lidar. The lidar manufacturer’s 
specification sheet says that it has a typical range accuracy of 2 cm and a measurement range of 
120 m. The radar manufacturer’s specification sheet says that it has a range of 250 m and an accuracy 
of 1.8 m for its far range, and a near range of 100 m with an accuracy of 0.4 m.  
 
The first step is to test the base sensor performance by carrying out the standard tests for the key 
performance indicators [KPIs] as described in section 8.1. These tests will include a complete 
uncertainty analysis and could include use of targets of varying reflectivity to characterise the sensor 
performance more extensively. The base sensor tests show that the lidar has a maximum detectable 
range of 110 m with an associated uncertainty of 0.2 m, and the radar has a maximum detectable 
range of 250 m and an associated uncertainty of 1 m for a high reflective target and an uncertainty of 
5 m for a low reflective target. It is not uncommon for tests to highlight aspects of sensor performance 
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that the specification sheets have not fully captured since they are not designed to contain that level 
of detail. Such tests can highlight the gaps in performance that may need to be covered by 
complementary sensors.  The testing will also help to identify conditions under which the 
complementarity of the sensors means the system as a whole is still safe even when the performance 
of one sensor is degraded.     
 
It is decided that this level of performance is adequate and that the next level of testing should be 
undertaken. The next level consists of testing the sensors, either singly or as a suite, under real and 
under simulated weather conditions.  
 
The simulated weather environment has been set up to approximate a commonly assumed idealised 
raindrop size distribution for a rain rate of 100 mm hr-1.  This rate does not vary in time or space. The 
tests show that the water droplets attenuate the signal such that the maximum detectable range of 
the lidar drops to 70 m and that of the radar decreases to 140 m, so the range of both sensors has 
approximately halved.  
 
The outdoor weather environment is uncontrolled, so the rain rate at a given point varies chaotically 
over time in a way that the Controlled Test Chamber cannot reproduce and does not exactly 
correspond to the idealised drop size distribution. The outdoor tests show that this variability causes 
a variation in performance of the sensor. During showery conditions, all with a headline rainfall rate 
of 100 mm hr-1, the maximum detectable range for the lidar varies between 66 m and 78 m and that 
of the radar varies between 128 m and 158 m.  
 
The above assumes for simplicity that the outdoor testbed experiences the rainfall rate of interest 
during the limited time available for testing.  While the chances of this will be maximised by choosing 
an appropriate geographical location, it cannot be guaranteed.  In practice therefore, it is the 
combination of selecting a range of CETF rainfall rates along with the use of well-characterised 
reference sensors in both the CETF and external testbed that will allow this comparison. 
 
It should be noted that sensors, and particularly sensors for Self-Driving Vehicles, are increasingly 
likely to include advanced processing options such as object recognition and trajectory estimation. 
These tasks are typically carried out using advanced techniques such as machine learning. Testing of, 
reliability of, and evaluation of the uncertainty associated with the results of machine learning 
algorithms is an ongoing area of academic research. The topic is too complex to address within this 
project, so all sensors are assumed to return an electrical signal with minimal processing rather than 
information in a format interpretable by humans. A short discussion of object identification sensor 
testing is given at the end of this section.  
 
These tests supply confidence in two aspects of the sensors. The first is the typical performance in 
repeatable rainfall scenario, which can be supplied by the Controlled Test Chamber tests. The second 
is the variability of that performance, and the associated increase in the uncertainty associated with 
the sensor response. This information is vital for reliable virtual testing of the autonomous system, 
because virtual testing must reflect the likely variability of the sensor responses. The testing will also 
help to identify conditions under which the complementarity of the sensors means the system as a 
whole is still safe even when the performance of one sensor is degraded.  
 
The final tests involve testing the full vehicle in the CETF and ultimately in the real world. The CETF 
vehicle tests can identify whether any aspects of the wet weather adversely affect the sensor suite 
performance. The radar system on our vehicle is mounted behind a bumper, and the test has shown 
that that the radar performance, and in particular the maximum detectable range, decreases 
significantly due to formation of a water film on the bumper.  
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It is likely that this type of problem would only be picked up at a full vehicle test. The real world tests 
will pick up further examples of degradation, potentially due to the variability of weather conditions, 
to mechanical and vibration conditions that only occur under real driving conditions, and 
temperature-based effects whether due to solar heating or formation of ice in cold weather. 
 

6.3. Benefits of the approach 
The information from all of these tests including virtual simulation testing, collectively increases 
confidence in the safety of the system, and is used for validation and verification of the various models 
used in the virtual testing environment. The virtual testing environment, once validated and verified, 
can be used to test scenarios that are dangerous or near-impossible to reproduce in the real world.  
 
The golden thread approach has different levels and complexities at its heart. The system being 
certified is the complete vehicle, but the required confidence in the complete system can only be built 
by testing individual sensors and sensor combinations to ensure that the system has been 
characterised correctly within the virtual testing environment (see section 6.7 on the relationship to 
functional testing).  The majority of CAVs use multiple complementary systems specifically because 
different sensors are better at different sensing tasks, and so it is essential to test the entire system 
as well as the individual components. 

 

6.4. Testbed definitions and purpose 
The approach outlined in this section has been developed by considering the different aspects of 
testing that are relevant to CAVs. Testing has several "dimensions" that determine the nature of the 
test. These include: 

• Real world vs virtual 
• Single sensor vs sensor suite vs sensor suite in the entire vehicle 
• No weather vs simulated weather vs real weather 

 
Each test type has strengths and weaknesses and generates information that can be used for specific 
purposes.   The table demonstrates some of the strengths and weaknesses of each environment, 
which when used in combination, will deliver assurance of the sensor performance in the full range of 
weather scenarios. 

 
 

Core environments 
Environment Description Purpose Strengths (S) / 

Weaknesses (W) 

Calibration lab Sensor tests in idealised 
“weather free” 
conditions 

Baseline 
characterisation of the 
sensor performance 
with respect to 
reference targets 

S: Low uncertainty 
characterisation of 
sensors 
 
W: Long way from 
real world 
conditions  
 
W: Real world 
environments are 
scaled in size and 
velocity in addition 
to difficulty in 
emulating weather 
conditions 
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Physical weather 
emulator 
( CETF) 

This is a physically large 
scale controlled 
environment test facility 
(CETF).   Weather 
conditions (e.g. rain, 
fog…) are created and 
are to some degree 
controllable.  All key 
meteorological 
parameters are 
measured as if they 
were in the real world.  
Majority of the KPI tests 
can be performed 
except those KPIs which 
rely on vehicle motion 

To span the range of 
meteorological 
conditions, albeit 
imperfectly in a quasi-
repeatable manner  

S: Quasi-repeatable 
and enables testing 
on demand across a 
wide dynamic range 
 
W: Is not 100% 
faithful to real world 
 
W: Likely limitation 
with respect to 
representing 
weather in motion 
with respect to the 
sensor 

Real world weather 
test bed 

Fully instrumented test 
range in the outside 
world.  Includes 
measurement of all 
relevant meteorological 
variables 

To capture real-world 
variability and sensor 
response   

S: Provides physical 
realism to the 
ecosystems 
 
W: Dependent on 
the weather coming 
to site and therefore 
may need multiple 
sites (globally)     
 
W: Likely cannot test 
all sensors across 
whole dynamic 
range in these 
environments 
 
W: Ability to test 
impact of weather 
when sensor is in 
motion is uncertain 

Virtual 
environment 

Testing part or whole 
vehicle systems in a 
user controlled digital 
environment in a wide 
range of scenarios 

To test the vehicle in 
situations that cannot 
be tested safely in the 
real world, and to 
replicate tests for 
validation purposes 

S: Can simulate rare 
and hazardous 
events safely 
 
S: Can selectively 
test partial or 
complete systems 
(i.e. ‘inject’ virtual 
signal to any part of 
the modelled 
system) 
 
W: Requires proof 
that virtual world 
replicates reality 
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Full vehicle on the 
road 

Exposure of sensors 
mounted on the vehicle 
in the real-world 
environment, but it is 
likely that 
meteorological 
measurements will not 
be of operational 
quality (i.e. as used to 
determine the ODD)  

Corroboration of the 
virtual models. 
 
The only way of 
potentially discovering 
unmodelled aspects or 
new degradation 
pathways 

S: Demonstrates 
whole vehicle 
integration 
 
W: Expensive, and 
impossible to 
selectively sample 
full range of weather 
scenarios 

Desirable environments 

Environment Description Purpose Strengths (S) / 
weaknesses (W) 

Mobile test bed “Storm chasing” – a 
redeployable realisation 
of the real-world 
weather test bed, likely 
with a reduced set of 
meteorological sensors 
and reference targets 

Increases the 
probability of exposing 
the sensor tests to high 
impact weather, 
especially where these 
have some degree of 
predictability of 
occurrence 

S: Increased 
sampling of rarer 
high impact weather 
 
W: Deployability 
may come at the 
expense of 
calibration and 
measurement 
sensitivity (e.g. due 
to alignment of 
sensors to targets 
etc) 

Observation fleet Vehicles with enhanced 
meteorological 
measurement systems 
in addition to sensor 
suite for deployment for 
more ad hoc sampling.  
Reference targets not 
likely to be included, 
although some may be 
implemented as 
roadside infrastructure 

To enhance sampling of 
sensor degradation in 
real world conditions 

S: Experiences real-
world conditions 
(along with well-
characterised 
weather) 
 
S: Informs our 
understanding of 
measurability of 
ODD weather 
parameters with 
respect to the 
traditional weather 
observations 
networks 
 
W: Hard to make KPI 
measurements 

Opportunistic Vehicles with sensors 
but no bespoke weather 
measurement 

Characterisation of 
sensor degradation 
over operational 
lifetime and 
identification of failure 
modes in broadly 
characterised weather 
types 

S: Very large 
sampling population 
 
W: Little or no 
measurement of KPI 
performance 
 
W: Dependent on 
lower quality 
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meteorological 
measurements 
 
W: Potential 
resistance to data 
sharing 

 
Table 1:  Description of strengths and weaknesses of each test/testbed 
 
Further explanation of this assessment is given below: 
 
Virtual tests are an efficient way of addressing the need for vehicles to demonstrate their safety during 
rare and dangerous situations. Unusual behaviour by pedestrians, cyclists and other vehicles can be 
simulated without needing to put any of these road users at risk. The main difficulty with virtual testing 
is verification. Demonstrating that the virtual world is sufficiently similar to the real word to be 
confident that the safety in the virtual world guarantees safety in the real world is a complex and 
challenging task. A related problem is ensuring that the virtual world includes all relevant safety-
critical phenomena: in particular, the challenges (weather, infrastructure, driving culture, wildlife, 
etc.) involved in driving will vary hugely from country to country. The costs associated with virtual 
testing may mean that a different suite of tests is required to certify CAVs in different regions.  
 
Confidence of safety in the real world cannot be obtained without real world tests. Virtual worlds 
inevitably involve simplification and assumptions and reflect the developers' best belief about reality 
but this best belief may be inaccurate. Only real-world testing can check these assumptions are valid. 
Further, many aspects of virtual testing depend on real world tests for input data. In particular, sensor 
models need to be based on real world tests in order to accurately reflect true performance and 
associated uncertainty.  
 
Single sensor tests enable the key performance indicators described in Section 8 to be evaluated, and 
they provide the data to feed into sensor models. Sensor suite tests allow for exploration of the 
complementary nature of the sensors. For instance if the sensors are mounted in positions equivalent 
to their locations on a typical car, it would be possible to design a test to check for blind spots, 
redundancy, or conflicting detections (e.g. one sensor detects an object and the other doesn’t even 
though single sensor tests suggest they should both detect it). Full vehicle tests allow for consideration 
of real-world effects that are difficult to mimic such as occlusion or reflection from the vehicle body, 
vibration of the chassis, and the effects of sensor coverings added for aesthetic purposes.  
 
No-weather tests provide a baseline for the performance of a given sensor or system so that the 
effects of weather on the KPIs can be quantified. Simulated weather tests (i.e. tests that artificially 
recreate weather conditions in a controlled manner such as sprinklers for rain, aerosols for fog, fans 
for wind, etc.) create an understanding of how the sensors respond to weather with known and 
controlled characteristics, and thus enable validation of models of the effects of weather on sensors. 
 
Furthermore, the results may suggest methods of improvement of the “weather effects” models, and 
they may feed information into data-driven models of weather-affected sensors. Real weather tests 
(i.e. tests in the open air under non-controlled conditions) provide further validation of “weather 
effects” models, in particular by providing some insight into how well the approximations made in the 
development of those models matches reality. 
 
There are further questions that may affect the balance between the number of tests at each level. In 
particular, it should be noted that some aspects of the testing and characterisation should not be a 
once-in-a-lifetime occurrence. Sensors on vehicles require testing and calibration on a regular basis 
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because they are safety-critical systems14. In addition to ensuring ongoing safety, these procedures 
will generate useful information about sensor drift and permanent degradation (i.e. not weather-
based) of sensors in use that may help to guide policy on sensor replacement.  
 
Another related aspect is retesting in the event of component replacement. This aspect will not be 
discussed in detail here since it needs to be considered on a case by case basis, but it is possible to 
envisage a minimal subset of the full range of tests that could provide enough confidence that the car 
response is unaffected by a change of sensor and the vehicle is therefore still safe, in the same way as 
it may not be necessary to retest the crashworthiness of a standard vehicle if the only component 
altered in the new version is a wing mirror. 

 

6.5. Traceability, Uncertainty & Risk  
The purpose of traceability is to guarantee that measurements are accurate, by demonstrating that 
their outputs can be linked back to internationally agreed standards, via a traceability chain. For most 
sensor types this traceability chain is already well established for the sensor itself. At each step of the 
chain, it is necessary to show not only the traceability of the measurement, but also that the conditions 
that affect the measurement (such as temperature, vibration, and electromagnetic fields) are 
controlled and measured. For testing of sensor performance in rain, this effectively means that the 
rain must be controlled or measured, and ideally both. The entire purpose of the test is to characterise 
how the sensor reacts to rain of a known drop size distribution and intensity, so these parameters 
need to be measured, and ideally measured traceably.  
 
Measurement of conditions becomes more challenging in "real weather" tests. Even though testing 
of stationary sensors in real weather eliminates the problems associated with defining and measuring 
the weather conditions a moving vehicle is experiencing, for the measured weather to be meaningful 
it needs to be measured sufficiently close to the sensor that the sensor can be said to be experiencing 
the same weather as is being measured. As has been mentioned above, the fractal nature of weather 
may make this requirement challenging. For a moving vehicle in real weather there are the challenges 
of spatial resolution and time synchronisation. Sensors may have integration times that are 
comparable to the time period over which rain intensity varies, so that the link between weather as 
measured and sensor response becomes more difficult to define.  
 
Uncertainty is unavoidable in any situation involving measurement, and the random nature of 
weather makes this uncertainty even larger. In safety critical systems such as CAVs, it is vital to take 
the uncertainty into account when defining the criteria to judge a vehicle as "safe" under a given set 
of circumstances. Specifically, the probability that the vehicle will take a course of action leading to 
harm, whether to the occupants or to other road users, needs to be calculated in a way that takes the 
variability of weather and sensor response into account. This calculation is almost certain to be 
computationally expensive, but the risk to life involved in neglecting this calculation is sufficiently large 
that the accuracy should not be compromised without extremely good reason. 
 
Uncertainty evaluation is key to reliable decision making, and a consideration of uncertainty is 
essential for safety critical applications. Broadly speaking, there are two sources of uncertainty that 
must be considered within this environment: uncertainty arising from measurement uncertainty, and 
uncertainty arising from model choices. 
 
Uncertainty arising from measurement uncertainty is generally quantified and well understood, and 
can be propagated through the virtual testing environment using sampling methods such as Monte 
Carlo simulation that select values of the uncertain quantities in a statistically justified manner, run 
the testing scenario, and use the results to obtain statistical information about the scenario outcome. 

 
14 Abari et Al., Lyft.inc, 2019, Mobile Sensor Calibration Patent Application,   US2019/0204425,   
https://www.freepatentsonline.com/20190204425.pdf  

https://www.freepatentsonline.com/20190204425.pdf


NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

For the virtual testing environment, it is expected that the scenario outcome would be a classification 
of the manoeuvres made by the vehicle as either safe or not safe (perhaps also including near miss as 
a category), and so the statistical information could be as simple as a statement of the percentage of 
simulations that were placed in each category.   
 
Uncertainty arising from model choices is more difficult to quantify. A typical approach is to validate 
the model against reality without considering the errors arising from model assumptions, and to 
consider the model choice uncertainty to be negligible if sufficiently good agreement is achieved. 
However, in a virtual testing environment, much of the uncertainty arises from simplifications made 
to reduce computational expense, and this type of error can be quantified. 
 
Virtual testing for safety certification will require careful definition of the scenarios to be tested. As 
has been noted elsewhere, different scenarios are likely to be important in different geographical 
areas due to the variations in weather, infrastructure, driving culture, wildlife, and so on. It is also 
important to note that a completely different way of thinking about unsafe scenarios are necessary, 
because an AI has a much narrower field of experience than a human and has a completely different 
set of sensory information. The differences in sensory information can be taken into account by 
defining the key performance indicators for each sensor class, as has been done above, and 
considering the environmental conditions and other situations that would lead to a reduction in 
performance.  
 
The narrowness of experience is considerably more difficult to limit. A human being can make 
deductions about dangerous situations from their knowledge of the world beyond the driving 
environment, whereas an AI only knows what it has been shown. As an example, consider the 2015 
incident at the Shoreham air show, where an aircraft crashed onto an A road and caused multiple 
fatalities. A CAV would be unlikely to be monitoring airborne objects and would be unlikely to have 
experienced an airborne danger during its training, whereas a human driver would be more likely to 
identify that a potentially dangerous event was taking place. Similarly, a human driving in high winds 
would be more likely to be aware of the dangers of windblown objects than an AI, unless gale 
situations had been deliberately included in training. 
 
These differences make identification of risk a more challenging proposition. It may be that the initial 
specification of driving conditions under which an AI is safe is conservative, and that the testing suite 
and the associated specification expand as it becomes more evident where the gaps in safe 
performance truly lie.  
 
Certification of CAVs is expected to depend on the accumulation of multiple pieces of evidence that 
the vehicle performs safely in a set of pre-defined scenarios. The use of an evidence chain rather than 
a single pass/fail test makes it less likely that the vehicle will be designed specifically to pass the test 
rather than to drive safely in general. The scenario set for full autonomy is expected to be large, varied, 
and to vary geographically with common features.  
 
Figure 5 gives examples of how the evidence chain might be delivered by the test ecosystem through 
the use of common measurements and references between the different environments. This is also 
discussed in Section 7. 
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Figure 5: Indicative examples of how traceability can be strengthened in the test ecosystem through 
the use of common measurements and references in the different test environments 

 
It is also possible that the definition of “safe” behaviour will be broad (e.g. avoidance of damage to 
the vehicle and other road users) rather than prescriptive (e.g. vehicle stops within 20 metres) as this 
will also make designing solely to pass the test less likely. “Safe” may also be different for different 
operational scenarios, for instance different vehicle configurations may require different definitions 
of safe, and cargo-carrying vehicles such as vans and trucks may require a different set of criteria from 
passenger vehicles. 

 

6.6. Correlation  
A common (and often incorrect) assumption when considering the implications of measurement and 
modelling uncertainty on our confidence in the outputs of a model is that all uncertainties are 
uncorrelated.   In the case of CAV sensor response to weather, this cannot be assumed as it may result 
in over (or under) confidence in the abilities of a combined sensor set to cope with adverse weather. 
 
As is mentioned before, weather is a random and fractal phenomenon. Most weather conditions will 
affect the performance of more than one type of sensor. When two sensors are affected by the same 
phenomenon their responses and associated uncertainties are correlated. In general, when two 
quantities are correlated due to their dependence on a third phenomenon, it is simpler to model the 
third phenomenon directly. This approach is the most likely option within a virtual testing 
environment.  
 
Within a virtual testing system each sensor will have its own model. The virtual testing environment 
will return the weather-affected response of the environment appropriate to the sensor model, 
including any random effects directly. This approach generates the correlation: the same virtual 
weather affects the sensors, so their responses are linked, but the direct use of a model of the weather 
means that the link is produced without any need of a correlation matrix linking the sensor responses. 
 
Correlation becomes more problematic if the weather is not modelled directly. If the sensor responses 
are treated as random variables, then they will need to be linked via a correlation matrix and 
potentially via a systematic term. This approach is unlikely to be used in practice within a virtual testing 
environment precisely because of these systematic terms: it is expected that the predominant effect 
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of rain (for instance) on a radar pulse will be increased scattering and a decrease in the intensity of 
the received signal, and the decreased signal intensity will cause a systematic change to the sensor 
response as a whole. The presence of the systematic effect makes it necessary to treat weather as a 
control variable. 
 
An estimate of any correlations could be made from combining several sources of information. For 
rain, calculations of scattering and absorption for different signal types will show the correlations 
between the received signals directly, and testing of multiple sensors in the same weather conditions 
will allow the correlation between the sensor responses to be evaluated. 
 
In addition to the correlation between the uncertainties associated with the sensor responses, there 
will also be a correlation between the sensor responses that is due to the approximations made within 
the weather and other environmental models within the testing environment.  
 
As an example, consider the modelling of the effects of rainfall on lidar and radar sensors. The ideal 
model of the effects of rain on these sensors would calculate an exact value for the attenuation of a 
lidar or radar signal by a single raindrop using Maxwell’s15 equations to solve an electromagnetic 
scattering problem, and would combine the results of these individual scatterings via integration using 
a perfect description of the raindrop size distribution to define the probability of the laser or radar 
hitting each drop size. 
 
In reality, the model of drop size distribution is not perfect, and so the calculated values of the 
attenuation for each frequency will not be perfect. Further, because the true raindrop distribution 
may have a systematic error (e.g. the distribution over-estimates the probability or a drop having a 
given radius) as well as random errors, there may be a significant systematic error in the values, and 
these errors in each frequency range will be correlated because they come from the effects of the 
rain. The likely size of the effect can be investigated using different distribution parameterisations 
within the integration model.  
 
In general, it is not obvious whether the nature of the effects of these approximations is random or 
systematic. For the raindrop example, it is likely that the difference between true raindrop size 
distribution and the approximate size distribution has both types of components. The sensitivity of 
the results can be estimated to some extent, or at any rate bounded, by carrying out identical 
calculations for different drop size distributions and looking at the variation of the outputs. These 
calculations can include a consideration of wavelength dependence, and hence correlation between 
sensors. Again, these errors and correlations can be folded into the description of the weather-
affected sensor response by treating the effects of the rain drop size distribution as a random quantity 
to be sampled during uncertainty propagation calculations. 
 

6.7. Relationship with functional testing 
The Framework offers an essentially Bayesian approach to assurance, i.e. where confidence in the 
assurance of the sensor (e.g. the maximum range KPI) increases with the addition of new information; 
in this case the different tests from the different parts of the ecosystem.   
 
The approach is not at this stage focused on testing the functional capability of the system 
to recognise or identify a car.  This can come later in the pyramid. 
 
One of the challenges around post processing of raw data, especially with Machine Learning (ML), is 
that if you always use a blue jumper and a white car in your functional test, the ML will proceed to 
associate blue blobs with people and white blobs with cars and the smaller the blob the farther 

 
15 Maxwell, James Clerk (1865). "A dynamical theory of the electromagnetic field". Philosophical Transactions 
of the Royal Society of London. 155: 459–512 
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away.  The challenge here is that this tells you very little about whether the ML will recognise a grey 
jumper on a child facing away or a parked silver minibus reflecting the blue sky.  
 
This can (and does) create real challenges in trying to distinguish the source of the problem: 
sensor, board processing, data fusion, ML control system etc. 
 
The premise that the outlined approach takes is that quantitative assurance (with error bars) is built 
through a consistent use of reference targets.  Traceability demands this.  The outcome of this fully 
quantitative approach sets out to be that if a car such as a Ford Focus is put on a test range, the results 
are fully explainable from (i.e. predicted by) the rigorous approach.  In this context the Ford Focus test 
is a necessary but not sufficient demonstration of performance.   
  
When the information from each new test is added, the KPI value changes as does the level of 
confidence; when high quality information is added it has more influence on the KPI value and also 
tightens the error bars on the assurance.    A Ford Focus test could therefore be used in two ways;  

1. Assurance: it can be added into the Bayesian mix, in which case it will influence the results, 
but relatively little; 

2. Reassurance: we can check whether the results, with their error bars, are consistent with the 
results and error bars from those from the rest of the ecosystem 

 
The aim of the targets that are used is to establish the performance envelope of the sensors in robust, 
reproducible, traceable fashion. 

• In the first instance in compact chambers – this supports low(er) cost interventions in the 
development stage and troubleshooting, where there is a high degree of control which 
supports confidence; this is where we are essentially looking at the “silicon”   

• In the second instance the tests are examining the performance envelope of the archetypal 
sensors in a degraded environment (i.e. in open air) 

  
Together these will define the limiting cases (including maximum range) for detecting a target 
regardless of class (person, cyclist, bike, lamppost etc.). 

• Having established this performance envelope in a traceable and high confidence fashion, it 
will be possible to produce trustworthy sensor models for use in synthetic testing 
environments  

• At this point it is possible to test the functional performance of the control system (ML/AI 
etc..) to recognise and identify a target and take safe and appropriate action – building 
confidence in the technology    

• Successfully completing synthetic testing, the whole vehicle will be permitted to engage in 
functional test e.g. Euro NCAP including against soft targets.  It would probably be useful to 
produce a model of the soft target for transfer between synthetic and real world 

 
In summary, the approach outlined here is built on assurance, while, where it’s a practical 
demonstration (and not linked with other, different tests), the use of recognisable targets constitutes 
reassurance.   
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7. Weather:  developing a reliable and usable description  
 
This section summarises the key considerations when attempting to describe and measure the 
weather in a way that is suitable for inferring its impact on sensor performance.   Using the example 
of signal attenuation through falling rain, it describes the sensitivity of sensor response to the small 
scale detail, the resultant implications for the testbed ecosystem and the need to consider the ability 
to measure the weather components of the ODD in an operational context. 
 
Appendices F-H contain further supporting data. 

 

7.1. The Golden Thread 
We have adopted the term Golden Thread to describe the linkage between test environments that 
will, in combination, deliver the assurance of CAV sensors.   
 
The interaction between the weather and the performance of any given sensor can be highly complex 
and the magnitude of the impact may be highly dependent on the detail of the weather at very small 
scales.  Furthermore, each weather element (e.g. fog, rain, snow etc) causes the different sensors to 
respond very differently due to the strong dependence on the wavelength of the sensor in question.    
For this study, a single aspect of the weather – falling rainfall (as opposed to spray) – and its impact 
on the maximum range KPI for lidar and mm-wave radar were selected to demonstrate the key 
elements of the golden thread.   This choice was made because rainfall carries many of the challenges 
around very high levels of variability over the time and spaces scales that are relevant to CAVs, it has 
a well-understood climatology16 and its impact on these wavelengths can be quantitatively modelled 
sufficiently well using established theory. 

 

7.2. Linking Rainfall to the maximum range KPI - overview 
The maximum range KPI provides an easily understood example to illustrate the impact of rainfall on 
a sensor.  Intuitively, in rainfall, the path of a beam of lidar or radar radiation will be obscured by the 
intervening rain drops.  The energy may be absorbed by the raindrop or scattered out of the beam  (It 
may also be scattered back into the beam and continue its journey, although possibly with a small 
delay, which might also have an impact on the signal processing.).  The testing regime must capture 
these effects, but it must also be agnostic to the details of any given sensor i.e. the job is to test the 
impact of rain on the KPI.  This is critical as the job of the test regime is to characterise the overall 
performance of the sensors, not stand in the way of the innovation that allows one sensor to be more 
competitive than another. 
 
Noting the point above, it is not feasible to directly model the response of every sensor to rainfall 
explicitly (as indicated in the choice of approach ‘C’ in Section 8.5).  However, it is possible to identify 
a variable that relates rainfall intensity to the degree of impact on the sensor, without needing to fully 
model every aspect of the response.   The variable chosen is the 2-way attenuation, which is a measure 
of the total power of the lidar or radar beams that is intercepted on its journey from and back to the 
sensors during the interaction with the raindrops.   It is a physical property of the intervening 
atmosphere and is sensor-independent apart from the choice of wavelength i.e. it is the same for a 
good or bad sensor; a more performant sensor can simply cope with more attenuation.  As such it 
provides a good guide to the test set-up required to determine the maximum range KPI value. 
 
Note: For completeness, it is stressed here that over short distances and short pulses involved in the 
CAV context, the impact on a sensor may manifest itself as signal loss, noise and/or pulse 
broadening.  Appendix F also illustrates that, especially at lidar wavelengths in rainfall, scattering by 

 
16 Dixon, J (2019) An investigation into short-period, extreme rainfall in the UK, Report for Innovate UK, Met 
Office, pp79.  Available at: https://www.metoffice.gov.uk/services/transport/cav 
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raindrops may be concentrated in a forward peak that is smaller than the angular resolution of the 
sensor.  In summary, using the attenuation as we have done in the walkthrough, as a simple 
intensity loss, is a simplification. 
 

7.3. Implications of sensitivity to the details of rainfall 
Ultimately the questions that we are trying to address are “If we wish to determine the maximum 
range of the detector for a rainfall rate of R, as measured or forecast for the location of the CAV on 
the road,  

(a) what range of rainfall rates do we need to test in the ecosystems to achieve a certain 
confidence? 
(b) and what is the precise definition of the rainfall rate as observed in the real world (i.e. over 
what time and space scales is it an average)?” 

 
Appendix F builds up the components of the challenge from a single raindrop upwards to the 
monitoring of the ODD in operations.  The key messages are: 
 

• The degradation of the signal to/from a CAV sensor is due to the cumulative effect of the 
interaction of the electromagnetic radiation passing (from and) to the sensor with each individual 
raindrop.  The magnitude of this interaction is strongly and non-linearly related to the relative size 
of the drop and the wavelength   

• The degradation can therefore be very sensitive to the detail of how the rainfall is distributed 
across the rain drop sizes, the drop size distribution (DSD).  This may have particularly significant 
implications when considering the relative performance of two or more different sensors working 
on the same CAV, e.g. assumptions of sensor redundancy in edge case weather, because of the 
correlation between the channels 

• In the test environments, it is not sufficient to merely characterise the rainfall in terms of its rain 
rate in mm/hr.  The DSD must also be measured (as described in the traceability section)  

• In nature, the DSD is very strongly influenced by the type of rainfall e.g. frontal/stratiform, 
orographic or convective.  Therefore, sensor assurance expressed only in terms of rain rate, will 
necessarily result in larger uncertainties regarding real world performance.  It will also introduce 
correlated uncertainties in the assurance of sensors at other wavebands (The study therefore 
ensured that BSI PAS 1883 includes rainfall type in the ODD description.).  This is demonstrated in 
Fig 6 below, which is also given in Appendix F 

• It cannot be assumed from the outset that a CETF will be capable of producing the full range of 

naturally occurring DSDs with sufficient fidelity that it can deemed equivalent to testing in the 

real world 

• It is therefore essential to have an external testbed within the ecosystem, the purpose of which 

will be either or both of:  

a. verifying the realism of the CETF DSD and corresponding (multi)sensor response; and 

b. complementing the test data from a CETF by combining the information from both in a 

manner that reflects the limitations of both 

• The two environments will contribute most positively to confidence if: 

a. the “manufactured” rainfall is broadly able to control the DSD in the most “active” areas 

of the DSD (i.e. those drop diameters that contribute most to signal degradation) 

simultaneously at all wavelengths of interest 

b. the shape of the raindrops with size is realistic in order to capture differences in 

polarisation response – in practice this means that a minimum fall distance (chamber 

height) is required in the CETF 

c. the measurement of the key meteorological elements (especially DSD) in the CETF and 

the external testbed should be as close to identical as possible.  Appendix G, provides an 

indicative list, which will also extend to the characterisation of fog  
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Figure 6: Scatterplot of 2-way attenuation for lidar (y-axis) and radar (x-axis).  The plot shows how 

attenuation varies for 4 different rainfall rates (1, 10, 50, 100 mm/hr), with the scatter at each rain 

rate due to the assumption of DSD.   The shapes refer to the type of rainfall, which will have a strong 

influence on the distribution of rain across smaller and larger droplet sizes.  The ellipses highlight 

the range of values for a given rain rate and approximate to the error correlations between channels 

should a single value of attenuation for a given rain rate be chosen. 

7.4. Linking Sensor Assurance to the ODD 
The above section addresses the question “For a given steady state (unvarying in time and space) 
rainfall rate, what are the key drivers for the maximum range KPI?”   It is already clear that a single 
rain rate can result in a range of attenuation values simply by distributing water across the different 
rain drop sizes. 
 
If it is assumed that we are willing to accept, for now, the use of a headline rain rate, and set aside the 
variability due to DSD, it is still necessary to answer the question “How does this rainfall rate relate to 
what we actually observe in the real world?” 17 This is essential because we must link the performance 

 
17 In reality both the DSD shape and the rain rate may vary, however, we assume for demonstration purposes 
that the DSD “shape parameters” are constant 
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characterisation in the test ecosystem to a practically measurable quantity within the ODD.  It is non-
trivial because of the following factors: 
 
• the rapid variations over time and space that rainfall exhibits 
• the relatively small time and space scales that are relevant to CAVs 
• the fact that traditional rainfall measurements were not designed with this end usage in mind 
 
Appendix F further develops these concepts.  Rain rates as used in conventional meteorological 
applications are typically measured by rain gauges and (C-band) radar networks that are sampling the 
volume of rain over very different time and space scales (~10’s cm2 over a minute versus ~1 km2 quasi-
instantaneously, respectively).  CAV sensors effectively represent a third sampling regime (a narrow 
beam over 10’s of metres quasi-instantaneously).   Put simply, CAV sensors experience rainfall very 
differently to meteorological networks (and humans) and to ignore this is dangerous. 
 
The following key points emerge: 
 

• The spatial and temporal variability of rainfall rate is fractal in nature - it demonstrates similar 
levels of detail at smaller and smaller and space scales.  The primary impact of this is that a CAV 
sensor may experience a higher rainfall than the average value provided by a meteorological 
observation (or meteorological data service), Figure 7 

• By way of an example, a CAV sensor that operates nominally in 50 mm/hr rainfall in a CETF may 
fail in a real rain event where a meteorological radar estimates the rainfall to be the same value.  
This is explored fully in Appendix F 

• It is not a given that the rainfall developed in a CETF will be able to demonstrate fully realistic time 
and space variability, especially in highly inhomogeneous conditions such as strong convective 
events.  It may however be desirable, if possible, to develop such functionality to simulate the 
rapid onset of heavy rain 

• This limitation further supports the need for external testbeds that have a high degree of 

commonality with the meteorological measurements in the CETF.  In this regard, as before, the 

role of the external testbed will be either or both of:  

a. verifying the realism of the CETF rainfall variability and the corresponding (multi)sensor 

response; and 

b. complementing the test data from a CETF by combining the information from both in a 

manner that reflects the limitations of both 

 

• It is essential to link the measurements of rain rate made in the external testbed and/or CETF to 
those that will be used to assess if the CAV is within its ODD when it is operational.   It would be 
premature to attempt to define a rainfall “standard” for such a purpose at this point although it 
is possible to provide useful guidance on how this variability might inform safety margins. An 
example approach is given in Appendix F.  (It is for this reason that BSI PAS 1883 suggests that the 
rainfall value in the ODD taxonomy for CAV includes a description of the spatial and temporal scale 
of the rainfall value but does not mandate what that is.) 
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Figure 7: The effect of spatial averaging of rainfall on maximum expected rainfall rate.  
Instantaneous maximum intensity decrease as the pixel size increases from 100m through 200 m to 
2 km.  (These images use simulated data and are explained further in Appendix F) 

 

7.5. How much detail is useful? 
The implications of the fractal nature of rainfall on different observing systems is a science specialism 
in its own right.   The ultimate application here is to be able to relate sensor performance to an 
affordably measurable ODD using a cost and time efficient assurance approach.   The primary 
considerations are: 
 

• It is not possible to capture all naturally occurring rainfall size distributions in the assurance 
process for every sensor under test 

• Quantitative knowledge of the operating environment of the CAV (for comparison with the ODD) 
will carry significant uncertainty – it is not possible to know the weather everywhere.  Knowledge 
of this may become the dominant error term in the assessment of exceedance of the ODD.  Also, 
secondary impact pathways (e.g. spray, water films) may be significant 

• A balance must therefore be struck in terms of the complexity of the test environments, 
however… 

• It remains critical that the uncertainties and their correlations between sensors are characterised 
thoroughly 
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8. Characterising Sensor Performance and KPIs 
 
This section describes the methodologies, key performance indicators, impact mechanisms and 
calibration approaches which collectively allow the reliable characterisation of sensor performance.  
A description of how this can enable the generation of reliable sensor models for virtual testing is also 
provided. 
 
Underpinning the development of the Framework would be a standardised methodology for the 
characterisation of sensors, such as the one outlined below, which requires a common approach for 
testing, calibration, definitions, facilities and data quality. 

 
Figure 8:  5 stage methodology for reliable Sensor characterisation 
 
In this 5-stage process, the calibration stage requires an accurate and traceable (i.e. back to ground 
truth) definition and technical specification of these different conditions, most of the important ones 
being weather related.  The propagation of uncertainties in sensor performance through to the 
performance of perception algorithms and autonomous decision making must be understood and 
then reflected in the setting of pragmatic industry standards. 

 

8.1. Sensor characteristics 
Sensor capabilities can be defined and quantified using a set of key performance indicators (KPIs). 
These indicators describe the ability of the sensors to detect objects, distinguish distinct objects, and 
the features of the sensor that may lead to incorrect decisions such as noise or poor contrast. The 
change in these KPIs under differing weather conditions will provide vital information for verification 
of the system as a whole. The use of KPIs enables sensors of different modalities to be compared 
because they relate to the capability of the sensor to detect objects rather than relating to the 
particular technical aspects, such as signal scattering or absorption, that affect sensor performance. 
 
A possible set of key performance indicators appropriate for sensors on CAVs are: 

• Angular/spatial resolution: capability to discriminate between two adjacent targets 
• Range resolution: capability to discriminate between two targets at different distances 
• Speed resolution:  capability to discriminate between two targets at different speeds 
• Maximum detectable range: the maximum range at which a target can be detected 
• Minimum detectable range: the minimum range at which a target can be detected  
• Maximum unambiguous speed: the maximum speed that can be measured 

unambiguously  
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• Minimum detectable speed: the minimum speed that can be measured 
• Update rate/responsiveness: the speed with which the systems provides new outputs 
• Tracking capability: the capability of the system to target/targets in the scene 
• Tracking capacity: the number of targets that the system can track at the same time 
• Contrast: the variance in luminance between the target and the scene background 
• Sidelobe levels: Ratio of main lobe and first sidelobe peaks in radar’s ambiguity function  
• Integrated Sidelobe Ratio: Ratio of main lobe power and the sum of the power of all the 

sidelobes in radar’s ambiguity function 
• Antenna patterns: the radiation pattern of the systems sensor antennae 
• False Alarm Probability: the probability of detecting a target when it is not present 
• Detection probability: the probability of detecting a target when it is present 
• Dynamic range: ratio of maximum to minimum value of received signal power that the 

system can measure 
• Noise floor: signal created from the sum of all the noise sources and unwanted signals 

measured by the sensor 
• Linear range: the range in which the output of systems applies a linear function to the 

input 
• Linearity: expression of deviation of the measured response curve departs from the ideal 

straight line 
• Field of view: the angle through which the system can detect electromagnetic radiation 

 
Sensor Characteristic Camera Lidar Radar Ultrasound 

Angular/spatial resolution ✓ ✓ ✓ ✓ 
Range resolution ✓ ✓ ✓ ✓ 

Speed resolution ✓ ✓ ✓ ✓ 
Maximum detectable range ✓ ✓ ✓ ✓ 
Minimum detectable range  ✓ ✓ ✓ ✓ 
Maximum unambiguous speed  ✓ ✓ ✓ ✓ 
Minimum detectable speed ✓ ✓ ✓ ✓ 
Update rate/responsiveness ✓ ✓ ✓ ✓ 
Field of view ✓ ✓ ✓ ✓ 
Contrast ✓ ✓   

Dynamic range ✓ ✓ ✓  

Noise floor ✓ ✓ ✓ ✓ 
Linear range ✓ ✓ ✓ ✓ 
Linearity ✓ ✓ ✓ ✓ 
Antenna patterns ✗ ✗ ✓ ✗ 
Sidelobe levels  ✗ ✗ ✓ ✗ 
Integrated Sidelobe Ratio ✗ ✗ ✓ ✗ 

False Alarm Probability   ✓  

Detection probability   ✓  

Tracking capability ✓ ✓ ✓  

Tracking capacity ✓ ✓ ✓  

 
Table 2:  KPIs relevant to the broad classes of CAV sensor 

 

8.2. Degradation table: Weather Impact Taxonomy 
All CAV sensor and communication systems experience performance reductions when exposed to 
weather. Quantifying the level and range of degradation is key to building sensor redundancy and 
situational awareness confidence. Table 3 presents a method for describing sensor type and 
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degradation mechanisms to produce a taxonomy of weather impact pathways. It is currently in draft 
form and will be updated and completed in Stage 2 to include the full quantified range of degradation 
levels and methods for detection. This is required to enable priority mechanisms to be explored early.  
Through investigations conducted by Met Office and NPL alongside the industry engagement process, 
it is clear that each weather element provides a range of pathways to sensor degradation, often in 
combination with other weather elements and sometimes as secondary mechanisms e.g. spray, films 
of water on sensor surfaces etc.  Furthermore, there are effects of weather on infrastructure, such as 
water films forming on road signs, that may affect the vehicle’s ability to detect or identify common 
objects.  
 
The table 3 on the following page is currently only indicative of the type of information to be 
included in a final version.  When the Taxonomy is completed, the table will be updated to describe 
the  mechanism and KPIs against each affected sensor, accompanied by greater detail.  
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Degradation Item Sensor(s) affected Mechanism (examples) 
Some Impacted KPI 
(examples) 

Detectability 
(indicative) 

Sun (direct sunlight) 

Cameras (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 

Over exposure. 
Exceedance of camera 
dynamic range. 
Heating of sensors and 
sensor housing. 
UV degradation of sensor 
windows. 

Reduced contrast and 
dynamic range, usable field 
of view, maximum 
detectable range, linearity, 
responsiveness, tracking 
capability and detection 
probability. 
Increased noise floor. 

The use of LUX 
meters and signal 
levels detected 
installed camera 
systems (auto-
contrast level for 
example).  

Sunlight and clouds 

Cameras (visible, IR, 
EO) 
Lidar 

Rapid changes in 
brightness 

Reduced contrast and 
dynamic range, maximum 
detectable range, linearity, 
responsiveness, tracking 
capability and detection 
probability. As above 

Rainfall 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 
GPS/GNSS 
Comms 

Absorption 
Refraction 
Scattering 
Reflection 
Coating on sensors and 
targets with water and 
dirt. 

Reduced angular and range 
resolution, maximum 
detectable range, tracking 
capability and detection 
probability. 
Increased sidelobes. 

Installed radar & 
lidar can provide 
feedback on rain 
density w.r.t. 
angular 
distribution. 

Fog and suspended 
water 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 

Absorption  
Scattering 
 
Coating of sensors 
and targets resulting 
in absorption, refraction, 
scattering and reflection.  

Reduced angular and range 
resolution, maximum 
detectable range, reduced 
tracking capability and 
detection probability. As above 

Water spray 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 
Especially if 
mounted low on 
vehicle 

Absorption 
Scattering  
 
Coating of sensors placed 
low on vehicle body, and 
targets causing 
absorption, refraction, 
scattering, reflection and 
occlusion.  
  

Reduced angular and range 
resolution, maximum 
detectable range, reduced 
tracking capability and 
detection probability. 
Radar clutter. As above 

Surface water (e.g. 
standing water, film, 
damp) 

Camera (visible, IR, 
EO) 
Lidar 
Radar 

Reflection and glare 
Temperature 
Scatter 
Production of spray 

Reduced contrast and 
dynamic range, usable field 
of view, maximum 
detectable range, tracking 
capability and detection 
probability 

Depending on 
cross correlation of 
sensors. 
Polarised lenses. 

Snowfall 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 
GPS/GNSS 
Comms 

Absorption & scattering   
Over exposure   
Coating of sensors 
and targets resulting in 
absorption, refraction, 
scattering, reflection and 
occlusion.  

Reduced contrast and 
dynamic range, usable field 
of view, maximum 
detectable range, tracking 
capability and detection 
probability. 
Increased sidelobe level. 

Medium detect 
Quite detectable 
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Surface snow (slush 
and dry) 

Camera (visible, IR, 
EO) 
Lidar 
Radar 

Reflection and glare 
Temperature 
Scatter 

Reduced contrast and 
dynamic range, usable field 
of view, maximum 
detectable range, tracking 
capability and detection 
probability  

Frost and icing 

Camera 
Radar 
Lidar 
Ultrasound 
GPS/GNSS 
Comms 

Absorption 
Distortion 
Occlusion 
Reflection and glare 
Refraction 
Coating on sensors and 
targets 

Reduced field of view, 
tracking and detection 
probability. 

Vehicle 
temperature 
sensors can 
provide probability 
of frost/ice. 

Hail 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 

Absorption 
Scattering  
Occlusion  
Physical damage to 
sensors and sensor 
window 

Reduced angular and range 
resolution, maximum 
detectable range,  
Increased radar clutter. Radar/Lidar data 

Lightning strikes 

Camera 
Radar 
Lidar 
Ultrasound 
GPS/GNSS 
Comms 

Electromagnetic 
discharge 
Physical damage to 
sensor or sensor housing Sensor failure. 

Lux, camera 
intensity and audio 
detection. 

Lightning flashes 

Camera (visible, IR, 
EO) 
Lidar 

Over exposure 
Rapid change in 
brightness 

Reduced contrast and 
dynamic range, maximum 
detectable range, linearity, 
responsiveness, tracking and 
detection probability. As above 

Wind (mostly in 
combination with e.g. 
rain and dust) 

Camera (visible, IR, 
EO) 
Radar 
Ultrasound 

Absorption 
Scattering 
Increase in airborne 
objects 

Reduced tracking and 
detection probability. 
Increased false alarm 
probability. x 

Temperature 

Cameras (visible, IR, 
EO) 
Lidar 
radar 
Ultrasound 

Heating of sensor and 
sensor housing. 
Deformation of sensor 
housing and window. 
Heating of surface air 
(mirages) 

Increased noise floor and 
false alarm probability. 
Reduced linearity. 
Changes in angular and 
range resolution. x 

Dust (airborne) 

Camera (visible, IR, 
EO) 
Lidar 
Radar 

Absorption 
Scattering 
Coating on sensor and 
targets 

Reduced angular and range 
resolution, maximum 
detectable range, tracking 
and detection probability, 
field of view. Radar/Lidar data 

Humidity 

Camera (visible, IR, 
EO) 
Lidar 
Radar 
Ultrasound 

Absorption  
 
Temporary coating of 
sensors with 
condensation 

Reduced angular and range 
resolution, maximum 
detectable range, reduced 
tracking capability and 
detection probability. x 

 
Table 3:  A sample of weather-dependent degradation pathways for CAV sensors 
 
The complexity of weather-related degradation for a range of sensors utilised with a CAV are 
presented in Figures 9.1-9.4.   This indicates how, for example, the daylight camera can on a bright  
clear day experience a range of degradation from zero to 100% depending if the sun is in front or 
behind the camera. Once cloud cover increases the flat lighting reduces the range of degradation for 
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all scenarios and performance might be considered optimal. Radar and Lidar have little dependence 
on solar energy and therefore have an optimum performance when the weather is free from 
precipitation. In these charts, the levels of degradation have been estimated, but in Stage 2 further 
quantification will be enabled across the weather patterns and thus sensor priority with a CAV can be 
better defined. The chart showing combinations of chart traces highlights optimum operational 
windows for all weather scenario and when a ‘CAV blind’ event is most probable.  

 

Figure 9.1: Simplified view of weather vs performance degradation for six key sensor types 
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Figure 9.2: Simplified view of weather vs performance degradation for Active sensor types 
combined 

 

 

Figure 9.3: Simplified view of weather vs performance degradation for Passive sensor types 
combined 

 

 

Figure 9.4: Simplified view of weather vs performance degradation for six key sensor types 
combined 

Note the images here are indicative only. 

 

8.3. Sensor calibration 
Robust environment perception is one of the essential tasks which an CAV must accomplish [1]. To 
achieve this goal, various sensors such as cameras [2], radars, LiDAR’s, and inertial navigation units 
are used, and information thereof is often fused. Essential tasks such as simultaneous localisation and 
mapping (SLAM), detection and tracking of moving objects, odometry, etc. are often improved by 
sensor fusion.  
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A fundamental step in the fusion process is sensor calibration, both intrinsic and extrinsic. The former 
provides internal parameters of each sensor (e.g. focal length of a camera, bias in LiDAR range 
measurements), while the latter provides relative transformation from one sensor coordinate frame 
to the other. The calibration can tackle both parameter groups at the same time or assume that 
sensors are already intrinsically calibrated and proceed with the extrinsic calibration. Additionally, 
temporal synchronisation of the sensors is sometimes performed within the calibration.  
 
Intrinsic parameters are related to the working principle of the sensor. Therefore, methods for finding 
intrinsic parameters do not share many similarities between different types of sensors. On the other 
hand, parametrisation of extrinsic calibration, i.e. homogeneous transformation, can always be 
expressed in the same manner, regardless of the sensors involved. Despite that, solving the extrinsic 
calibration requires finding correspondences in the data acquired by the sensors which can be 
challenging since different types of sensors measure different physical quantities. After 
correspondence registration, optimisation steps are performed to estimate the calibration 
parameters. While some methods require intrinsically calibrated sensors to find the extrinsic 
calibration, others perform optimisation on both parameter groups simultaneously. These methods 
typically try to satisfy some geometric constraints through minimisation of a problem-specific 
reprojection error. The geometric constraints involve nonlinearities which often cannot be solved 
analytically. To resolve that problem, estimators use iterative techniques to find the appropriate 
solution. Due to the nonconvexity of the problem caused by the nonlinearities, these methods have a 
risk of converging to a local minimum. To avoid that risk, some methods divide optimisation in initial 
rough estimates that guarantee near-optimal solutions followed by nonlinear iterative refinement 
steps. The success of the optimisation is highly dependent on the provided data. An important step 
before the data acquisition is to determine minimal requirements on the dataset for which the 
problem becomes identifiable (or observable in case of dynamical systems).  
 
The calibration approaches can be target-based or targetless. In the case of target-based calibration, 
correspondences originate from a specially designed target, while targetless methods utilise 
environmental features perceived by both sensors. The former has the advantage of the freedom of 
design which maximises the chance of both sensors perceiving the calibration target but requires the 
development of such a target and execution of an appropriate offline calibration procedure. The latter 
has the advantage of using the environment itself as the calibration target and can operate online by 
registering structural correspondences in the environment but requires both sensors to be able to 
extract the same environmental features. Registration of structural correspondences can be avoided 
by motion-based methods, which use the system’s motion estimated by the individual sensors to 
calibrate them. These methods have two main advantages: (i) they rely less on the sensors’ operating 
principles and can be applied to different sensors, if a sensor can estimate its motion, (ii) unlike other 
methods, they can extrinsically calibrate sensors with nonoverlapping fields of view. 
 
In Appendix D of this report, the different calibration techniques for the most popular sensor 
technologies used in the automotive industry such as camera system, LiDAR and radar are discussed. 
 

8.4. Sensor Test conclusions 
Diversity of sensors is critical for making CAVs vehicles safe and ubiquitous. Being able to self-calibrate 
the pose of the imaging system with respect to the road or ground ahead of the vehicle always 
provides us with critical information, since the degree of accuracy of the measurements of the 
distance to the environment elements has a huge impact on the decision-making process of ADAS or 
CAVs. A lack of accuracy in measuring the distances to the environment elements can have serious 
consequences for people and vehicles in traffic scenarios. While it's still too early in the market's 
development to predict exactly what the future holds for self-driving cars, the rapid advancement and 
promise of the various 3D imaging technologies suggest that it will continue to gain ground and move 
toward mainstream adoption. 
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8.5. Sensor Models  
Sensors, and particularly sensors for ADAS, are increasingly likely to include advanced processing 
options such as object recognition and trajectory estimation. These tasks are typically carried out using 
advanced techniques such as machine learning. Testing of, reliability of, and evaluation of the 
uncertainty associated with the results of machine learning algorithms is an ongoing area of academic 
research. The topic is too complex to address within this project, so all sensors are assumed to return 
an electrical signal with minimal processing rather than information in a format interpretable by 
humans. A short discussion of object identification sensor testing is given at the end of this section.  
 
The following discussion of sensor modelling assumes that the sensor models are to be used in a virtual 
testing environment.  The goal of the sensor model is to accurately reproduce the performance of the 
sensor so that the same information is supplied to the main AI by the sensor model as would be 
supplied to the main AI by the real sensor. The virtual environment interacts with the sensor as 

illustrated in Figure 10. The sensor sends a query to the environment, defining what type of sensor it 
is and any parameters (such as wavelength, field of view etc) associated with the sensor. The 
environment calculates the response, including effects of weather and any other environmental 
conditions, and sends the sensor model a definition of the received signal. The sensor model then 
processes the received signal to provide a sensor response to the main AI.   
 
The nature of these interactions, and of the virtual testing environment itself, will not be discussed in 
detail. The environment will need to create simulated versions of a received signal, as is done in the 
“vehicle in the loop” version of testing. This approach still has many open challenges. For example, 
existing computational resources and approaches are not sufficient to produce a photo-realistic 
synthetic world: humans can generally tell whether they are watching a film of reality or a simulation. 
This lack may not be a fatal problem, however: the differences between an AI and a human may mean 
that photo-realism as judged by a human goes beyond the level that is necessary to judge whether an 
AI would act safely in a given situation.   
 
Note that uncertainties are not explicitly mentioned in this figure, because it is expected that 
uncertainty propagation will be carried out through repeated running of a model that uses the 
information flow shown in Figure 10.   
 

 
 
Figure 10: Sketch of interaction between sensor model, virtual testing environment, and vehicle AI   
 
The performance of the sensor to be reproduced by the sensor model therefore has one essential 
aspect and two desirable ones. The essential aspect is that the sensor model must supply the AI with 
a signal exactly equivalent to the signal produced by the real sensor. The desirable aspects are the 
way the real sensor probes the real environment and the way that the sensor model probes the virtual 
environment should be as similar as possible, and the way the sensor model receives the response 
from the virtual environment and the way the real sensor receives the response from the real 
environment should be as similar as possible.   
 
There are several reasons why these aspects are desirable:  
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• The first is that a close resemblance between the model and reality makes validation of the model 
simpler, because it reduces the approximation errors within the model that will affect model 
accuracy and so gives greater confidence in the validation 

• The second reason, strongly related to validation, is that it is easier to debug a model that is similar 
to reality because the intermediate results are generally more likely to have an expected 
behaviour that can be checked for  

• The third reason is that improvement of the real-world system in the case of test failure is easier 
if reality and the virtual system resemble one another, because the root cause of failure is often 
easier to identify, and alternative successful sensor specifications are easier to define. For 
instance, if a radar system is such that backscatter of the signal during rainfall significantly affects 
the signal to noise ratio, an environment that returns the scattered and reflected fields will allow 
the analyst to understand the cause of failure better than an environment that supplies an 
idealised extinction coefficient or similar single parameter  

• A fourth reason is flexibility. It is easier to add new scenarios (such as new weather conditions) to 
an environment that is similar to reality because typically fewer approximations and extra 
calculations need to be made when defining the effect of the new environment on the signal to 
be returned to the sensor  

 
This desire to reproduce reality leads to a conflict at the heart of virtual testing. Realistically detailed 
models of driving scenarios are computationally expensive. The more realistic the model, and in 
particular the more realistic the description of the interaction between sensor and environment, the 
higher the computational cost and hence the longer the model takes to run. One of the main aims of 
virtual testing is to reduce the time required to prove vehicle safety. Successful development and 
usage of virtual testing environments will therefore require finding a balance between computational 
cost and level of realism.  
 
Sensor models therefore need to consider three aspects: probing, receiving, and processing. In 
general, the probing and receiving are likely to be physics-based because such models give the best 
approximation to reality and mean that a single model can be used for any situation where the physics 
describing the situation can be described using that model. For instance, a single physics-based model 
of a lidar system can be used for any form of object detection under any weather condition, provided 
that a) the scanning parameters of the lidar system are well understood, and b) the virtual 
environment has suitable physics-based descriptions of object responses to a laser under the weather 
condition of interest.  
 
The model of the processing is generally best described using a data-driven approach. The main reason 
for this is that a physics-based model is inevitably an idealisation and a simplification of the sensor, 
meaning that it is unlikely to capture the full details of the sensor response, particularly under 
challenging conditions. A further reason is that development of a physics-based model would require 
access to the inner workings of the sensor, which is proprietary information and unlikely to be shared.  
 
A data-driven approach to sensor model development depends on testing to generate the relevant 
data. The nature of these tests is discussed in more detail elsewhere in this document (section 6), but 
they should be sufficient to determine the true values of the key performance indicators (see section 
8.1) under a variety of weather conditions. 
 
The figure 11 below shows how we believe weather and weather-affected sensors are best described 
within a virtual testing environment and has informed our approach to the work.  
 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

 
 
Figure 11:  Perspectives on the treatment of weather sensor models 
 
Figure 11 shows a simplified illustration of a sensor interacting with weather. This figure has been 
used to inform the collaboration between NPL and the Met Office throughout this work. The principle 
is that the sensor works by sending out a signal and then receiving back a scattered or reflected version 
of that signal. Assume that this signal is affected by the presence of fog, and that fog is present 
between the object to be detected and the sensor, as shown in Figure 11A.  
 
In order to make a model of this situation, consisting of a sensor model and a virtual testing 
environment so that you can carry out virtual tests on the AI driving your CAV, there are two 
approaches, labelled B and C. Either:  

• (figure B) the effects of the weather on the sensor signal are rolled into the sensor model, in 
which case you need a comprehensive set of test data to describe how the sensor behaves in 
fog, or 

• (figure C) the effects of the weather on the sensor signal are described within the virtual 
testing environment. 

 
The research approach between NPL and the Met Office takes the second approach (C ), because it 
has a number of advantages (flexibility to weather type, accuracy, easier to swap sensors, etc.). The 
aim of the project is to illustrate how you might construct the models and (more importantly) how 
you would obtain the data/information to go into the models and to validate the models such that 
you could demonstrate that your model of a sensor on a vehicle in fog accurately reflected the actual 
behaviour of the sensor on the vehicle in fog.  
 
(Note, the Study involves rain not fog, but the concept is the same for other weather types, hence it 
being a Proof of Concept project). 
 
This definition of the weather as a feature of the virtual environment makes sensor model 
development, and hence generation of data for sensor model development, simpler. If the weather 
effects are folded into the sensor model then “weather” needs to be an input parameter to the sensor 
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model, and adequate data needs to be gathered to give accurate sensor model results for all values 
of that parameter. Given the near-infinite variety of weather (particularly in the UK), this is a 
challenging requirement. If the weather is shifted into the virtual testing environment, then the senor 
model only needs to reproduce the response of the sensor to a degraded signal, irrespective of the 
cause of the degradation. An additional benefit is that degradation of a signal is considerably easier to 
parameterise and quantify than weather. 
 
It has been noted elsewhere in this report that many sensors have built-in object identification 

algorithms. Testing these algorithms, and characterising them for modelling purposes, is a challenge. 

If manufacturers are prepared to share a black box version of the algorithms for use in the virtual 

testing environments that takes in a simulated signal and returns what the real sensor would return, 

then integration and virtual testing are straightforward. If they are not, it will be necessary to run a 

sufficiently large set of real tests of the sensor with the object identification in place to characterise 

its accuracy and uncertainty under all weather conditions for all classes of object it can identify. Again, 

this is a significant amount of effort.  

 

It is possible that CAV manufacturers would prefer to integrate the raw signal data into their AI 

algorithms, since this means that they maintain full control over the available data. Full control of the 

raw data means that sensor fusion algorithms can be more flexible, uncertainty evaluation can be 

handled more effectively, and full system testing becomes simpler. It also potentially reduces legal 

complications regarding responsibility in the event of an accident. This preference would mean that 

sensor manufacturers may offer sensors with and without embedded algorithms to different markets. 
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9. Roadmap for Framework delivery  
 
This section explores what activities are required to successfully adopt the recommendations in 
section 5 and deliver a working example of the Framework – defined as Stage 2.  It is essential that 
any activities are undertaken in close consultation with stakeholder groups, in order to ensure the 
Framework meets the criteria of reliability and usability.   
 
In addition to establishing a practical and transparent structure for engagement, it is necessary for 
there to be a process of implementation and employment of the Framework.  It is recommended that 
this is undertaken by Industry, supported by National PSRE’s with the oversight and coordination of 
Government Agencies (CCAV, regulatory etc.). 
 
The timeframe for the completion of Stage 2 can only be confirmed after a formal engagement and 
scoping exercise, but it is estimated to require 3 years.  Major factors in determining the timeframe 
for completion are the degree and quality of external engagement and the timing of external 
milestones, for example funding calls for projects which have a dependency on the Framework. 
 
There are three clusters of activities which can be identified: 

• Alignment, engagement and scoping. (section 9.1 below) 

• Research and Development:  Build and demonstrate the Framework (section 9.2 below) 

• Implementation and Deployment (section 9.3 below) 

 

 
 
Figure 12: Relationship between project, stakeholder engagement and sector roadmaps 

 

9.1 Alignment, Engagement and Scoping 
Engagement and collaboration across different stakeholder groups is a prerequisite to developing a 
successfully deployed Framework.   At the same time, UK and International agencies are generating 
standards, regulations, guidance and tools to support the assurance of CAV.   In 2019, the UK 
Government announced the development of an assurance system CAV PASS, to ensure self-driving 
vehicles are safe and secure by design and minimise any defects ahead of their testing, sale and wider 
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deployment on UK roads.   The Development of the Framework supports the first two elements of the 
CAVPASS process – vehicle technical standards and regulation + vehicle testing, approval and in-
service compliance. 
 

 
Figure 13:  CAVPASS process 
 

• The outputs from Stage 1 will need to be reviewed, discussed and integrated into the planning for 
a successful Stage 2.   It will be necessary to build on current engagement to get input and 
guidance from the safety assurance bodies, regulatory, certification, and insurance sectors for 
example.  Engagement will also increasingly focus on organisations who will be deploying / making 
use of the framework themselves, requiring them to understand what is required of 
implementation and to provide feedback on any issues with adoption as the project progresses  

• The timings and scope of the Framework delivery must be aligned with and integrated into related 
R&D roadmaps, safety assurance and testing and evaluation activities.   It should also be 
developed in the context of the evolving standards landscape. (BSI CAV standards roadmap) 

• A Sector Steering Group (SSG) or similar should be established, managed through CCAV, to ensure 
appropriate levels of governance, transparency and communication are maintained.  Likewise, 
resource will need to be available to manage a thorough and equitable engagement process 

• The above will enable completion of the scoping of activities, milestones, deliverables and 
timeframes for 9.2 - Development 

 

9.2 Stage 2 Research and Development:  Build and Demonstrate the Framework 
 
At this stage the following can be identified as required to achieve the development and working 
demonstration of the Framework.  It is noted that the engagement and alignment activities in 9.1 may 
result in additional requirements being identified. 
 
A. Completion of pathways to degradation Taxonomy (as per recommendation 5.4).  This will 

require lab research and data from demonstration of the test ecosystem. 
 

B. Specification and demonstration of the Test Ecosystem (recommendation 5.1).  This will provide 
the specifications for future permanent facilities and will enable the definitive set of 
measurements to be defined for each testbed.  It is also required to enable a full demonstration 
walkthrough of the Framework.  This will involve the following elements: 

o Undertake Calibration Lab Tests:  The data obtained from the “dry” calibration lab would 
be a precursor to make comparisons with the CETF to understand the weather impact on 
the sensor performance.   It should be noted that an ideal calibration lab itself would be 
different for the different sensors 
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o Build Demonstration external environment reference testbed.  While the detailed 
measurement of meteorological processes at dedicated testbeds is a well-established 
practice, the acquisition and analysis of these measurements for this new purpose is less 
well-developed.  It is therefore sensible to de-risk larger investment this area through a 
limited demonstration facility which would require being sited at a Met Office Research 
Unit.   Basic requirements for a demonstrator include: 

 Access to meteorological and measurement expertise and equipment 
 Enables testing over a range of ~200 m  
 Proximity to UK Testbeds for ease of industry engagement 

This Testbed demonstrator represents one of the more complex deliverables of Stage 2 
which is a reflection of its uniqueness and importance: 

 Informs final recommendation for the instrumentation (both meteorological and 
CAV sensor performance) required of a permanent facility, extending to the 
measurement of the other primary impact weather parameters (e.g. fog, dust, 
frozen hydrometeors etc) 

 Recommendations for possible geographical regions (or specific locations) of this 
facility – the balance of expediency over “guaranteed meteorology” may shift in 
favour of the latter as the Technical Readiness Level (TRL) of the test facility 
increases  

 Recommendations of the measurement set required in a Controlled 
Environmental Test Facility (CETF) in order to maximise both traceability and 
assurance confidence  

 Will inform the minimum measurement set for a possible mobile technical 
platforms 

o Generate Specifications for Weather emulation for CET F: this is to enable early 
competition/funding call for creating those elements of the CETF.  This will include the 
weather emulation equipment and chamber specifications 

o Explore other useful testing options: This activity focuses on identifying what quantitative 
information might be provided from additional test options, including mobile data capture 
and fixed roadside infrastructure 

o Creating the linkage into the virtual environment:  This should focus on the need to find 
a pragmatic middle ground between simplistic treatment of weather effects and requiring 
levels of evidence that are too computationally intensive to be practical  

 
C. Generate the Definitive set of measurements: (recommendation 5.3) The requisite set of 

measurements must be defined for each testbed and are required for the following three areas; 
Meteorological; Reference targets and KPI tests.  These will differ for each testbed as explained 
in Section 6.   The measurement data will be used for the Physical walkthrough of the Framework.  
This activity addresses all relevant weather types, as well as correlating data captured from in situ 
representative sensor suites with weather types/conditions.  It will require multiple years to 
establish and model a full suite of conditions and will require ongoing activities to keep up to date 
and improve testing methodologies.   This will also require specification for data sharing 
infrastructure and methodologies to enable linking of test data, including recommendations for 
standardisation of data and metadata formats. 

 
D. Physical Walkthrough of Framework: (recommendation 5.2)   The physical walkthrough will 

define the data model and interfaces used to link the test results and to link the physical and 
virtual spheres. The walkthrough should be used to investigate and demonstrate the effects of 
uncertainty (measurement and weather-generated) and decision-making parameters on the 
decision.   For the sake of efficiency, a direct interface to a virtual testing environment should not 
be required, but it is expected that the data flow between a sensor model and the virtual 
environment would be specified, and that a dummy sensor model would be created to illustrate 
this. 
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9.3 Framework implementation and deployment:  integration into funding calls 
The process of commissioning the framework into the market, will be industry/government led for 
use across UK stakeholders.  This should include the deployment of standardised test methodologies 
for weather effects on sensors, as well as guidelines for supporting data quality standards, and enable 
the verification of the equipment specifications for a planned UK environmental testbed facility, 
although the approach and timing will be determined during 1.2 above and rests outside the scope of 
Stage 2. 
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11. Appendices 
 

Appendix A:  Summary of engagement findings 
 
When considering the statements made in the logical flow in the discussion document (See Appendix 
B), there was a general consensus that linking the right tests could help increase overall confidence in 
test results; thereby pointing to a solution for the challenge of how to test whether perception 
systems are providing reliable outputs in different weather conditions.   
 
There was general support for the following points: 

• Testing (including virtual testing) of CAVs needs to take weather into account.  Hence vehicle test 
specifications, sensor characterisation, and virtual testing environments need to take weather 
into account 

• Better confidence in sensor performance can be achieved by a series of linked tests & 
characterisation exercises at different levels where sensors and full systems are tested both in 
reality and virtually. In this context “reality” may include testing in both the natural environment 
AND user-controlled environmental test facilities 

• Because weather demonstrates significant small-scale variability and sensor response has 
associated uncertainties, uncertainty calculation is critical and must be reflected appropriately in 
the virtual simulation 

 
Sensors are set to be increasingly relevant to a number of future standards workstreams.  As the 
project moves into the next stage, the project should ensure collaboration with other stakeholder 
groups at a committee level to define and agree the methodologies and tools and then propagate 
them through standards organisations and industry bodies.  A particular focus will be given to 
standards bodies. 
 
General agreement that in setting performance standards it is essential to safeguard against poor 
performing systems on the road.  One of the challenges in this regard is that much of the type approval 
for automation involves assessment of technical documentation from the manufacturers, which may 
not provide relevant or detailed enough information. 
 
It has been widely acknowledged that: 

• The challenge over modelling weather combinations is significant  

• It is not just the specified weather event testing (e.g. rain/sun/frost/wind) that is important to 
ensure the safe operation for sensors and systems but also how they deal with (or not) the 
transition between any two weather states   

• Weather models overall are immature 
 
Understanding the types of weather that impact sensor performance and what those impacts are / 
how to measure them is considered an important first step.  The Tables in Appendix 5 constitute a 
first step in building out the relevant definitions, and also in defining separation between different 
aspects of weather (e.g. standing water v water in the air).  Further steps and discussion will be 
undertaken to consider how this feeds into standards.   
 
With regards to weather definitions and impact there has to be a clear link into ODD language.  A 
problem with weather conditions in relation to CAV performance and the ODD is that weather 
elements may not be detectable by a CAV:  for example there is a difference between understanding 
regional and national rainfall and the rainfall in front of a vehicle.  
 
Detectability:  

• Important to be able to detect when and how sensor is being impacted 
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• Is it possible for vehicles sensors to define/detect whether there is weather which is altering 
performance? 

• Sensor needs to know there is something to look at 

• Question of how to test that vehicle can see as far as it needs to: “needs to” is likely to be speed 
and weather dependent (e.g. wet roads mean longer braking distance)   

 
Recognition that the issues defined here represent a current problem with the advent of ALKS and 
other ‘hands free’ or ‘self-driving’ ADAS regulations. 
 
With regards to the linking and hierarchy of tests: Support for a framework which could generate a 
continuum between different types of tests, which would align with the general best practice 
approach for tests to be conducted across simulation, proving ground and real world.    A requested 
next step identified was to demonstrate (theoretically) an example of how a roadmap of testing would 
work.  A first draft hierarchy was pulled together which appears in Figure 3 in Section 6. 
 
The presented approach on linked tests at the sensor level was acknowledged as providing several 
advantages over functional tests alone – at the same time, functional testing was still a valid part of 
testing overall.  This approach also helps create robust sensor models for simulation testing and 
promotes an audit trail around testing. 

• Bench testing: positioning is a factor. A well-positioned sensor i.e. good air flow, optimum view 
would be expected to behave better than exactly the same sensor array in a poor location. Needs 
to be reflected in bench testing 

• Real world weather testbed – may need to be more mobile 

• General support for a 250m environmental facility, combining wind with weather for example 

• The use/purpose of virtual environments; is this for validating the perception system or the ADS? 
 
In the context of current approaches by OEM’s a review of the hierarchy of testing indicated: 

• OEM focus of approach is on the whole vehicle sensors/perception system on a car. Overall 
perception system performance is considered important rather than a single sensor.   Agreed that 
this presents a challenge if a single sensor fails, but in itself is not a critical component (whereas 
perception system is): The challenge is how is this tested? 

• OEM focus on outputs:  validating what the perception system is seeing and the use of data 
gathering (real time) and viewing tools to support this.   This looks at establishing a minimum 
requirement for positioning/range performance, then also validating the outputs of perception 
system   

• Multiple views expressed that individual sensor performance testing had to be considered in the 
overall context of the V shaped system design and test (Equivalent of unit/component tests).  An 

indicative flow is:  vehicle requirements are x  therefore against known vehicle dynamics define 

the situational awareness requirements  this then defines mix and specification of sensors 

• A complete systems test should sit at the top (come last)   

• This is not a single linear hierarchy of tests, but a cyclical one 
• At a low level (sensors), there is probably a minimum specification that needs to be met – this give 

pass/fail at a “component” level 
• At a higher level (systems), there needs to be an evidence-based argument for the safety of the 

system 
• Caveat – a system comprising a set of sensors, each of which meets the minimum specification 

(all “Pass”), may well not constitute a sufficient system 
 
In general, the V model represents a methodical process of creation followed by verification and 
validation. The left side of the V works its way from requirements through design to implementation. 
At each step it is typical for the system to be broken into subsystems that are treated in parallel (e.g., 
there is one set of system requirements, but separate designs for each subsystem). The right side of 
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the V iteratively verifies and validates  larger chunks of the system as it climbs back up from small 
components to a system-level assessment. This model has been promoted to be the reference model 
that forms the basis of ISO 26262. Although ISO 26262 and its V framework generally reflect accepted 
practices for ensuring automotive safety, fully autonomous vehicles present unique challenges in 
mapping the technical aspects of the vehicle to the V approach below which has been summarised by 
P. Koopman, et.al in “Challenges in Autonomous Vehicle Testing and Validation”. 
 

 
 
Two important aspects of an “approval” / “verification” / “certification” method for sensors or 
perception systems must be borne in mind when considering the process:  

• Cost: The cost of the process to the Vehicle Manufacturer / ADSE requesting “approval” must be 
reasonable 

• Timing: Assuming that the system meets the requirements, it would be unreasonable for the 
process to delay a vehicle launch excessively  

 
General feedback on sensor data fusion was that the ability to test and safety assure was not yet 
developed.  What data from sensor is most important? 
 
With regards Uncertainty:    

• Both confidence and pass/fail will be relevant:  pass/fail is a function of confidence but not clear 
how to measure confidence.  Statistical analysis and the safety argument both factors 

• Uncertainty needs to capture in certification so you are not assuming perfect perception. i.e.  
Challenge around multiple sensors in a system and whole system validation 

• Positive feedback on the idea of having ‘error bars’ (uncertainty) in simulation 

• Recognised complexity of propagating uncertainty across a wide range of phenomena/materials 

• Use component level tests, then feed this into a simulation, from which one can understand the 
permutations around sensor performance and how this affects the rest of the system’s 
performance 

• Concern about effects in Simulation being computationally expensive which limits number of tests 
(suggested use of real-world testing to create abstract models which can be used more cheaply in 
simulation) 

• Identifying failure points through Monte Carlo simulation, which should be used sensibly 
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• Repeatability of virtual tests is key.  Need to be able to keep retesting to identify the issue 
 

The view is that as the number of connected vehicles and their on-board sensors increases, there will 
be an unprecedented ability to form a detailed and timely picture of the CAV-relevant environment.   
 
 
References 
 
[1] “Challenges in Autonomous Vehicle Testing and Validation”, Philip Koopman & Michael Wagner 
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Appendix B: Engagement Materials 
 
Summary document used in phone interviews and as preparation for the Workshop (note the version 
here is a longer version developed for the Workshop) 
 

CAV Sensor testing & models / Weather degradation Stage 1 project 
 

Preamble 
This is an informal document to provide context to the 5th March workshop.   It is an updated version 
of a note that was used in a number of stakeholder Skype calls to help shape the workshop, so the 
content will be familiar to some delegates.  We ask that the following is borne in mind when reading 
it: 

• It focusses on top level themes rather than the use of definitive/standardised language. If you feel 
we have inappropriately used a term, then please (a) forgive us and (b) let us know 

• It is not intended to be a comprehensive presentation of the Framework, not least because that 
requires the information gathered at this workshop.  If you feel something is missing it might be 
because of the level of simplification but, equally, please let us know your thoughts 

 

The project  
Our aim is to prove the concept of, and create a specification for, a usable and reliable Framework for 
characterising sensor performance in different weather-related conditions, including the ability to 
assess performance outside the design envelope.  Uses of this framework include validation, safety 
assurance and simulation testing of CAV. In order to test the approach, in this project we have 
focussed primarily on the single weather element of rainfall, although we expect the workshop 
discussions to extend to other weather factors. 
 

The “quick read”:  The logic flow 
• Testing (including virtual testing) of CAVs needs to take weather into account 
• Hence vehicle test specifications, sensor characterisation, and virtual testing environments 

need to take weather into account 
• Weather, using rain as an example, is not as simple as “heavy rain”/”rain level 3” etc, because 

it varies spatially and temporally. So, a shower that is “on average” apparently safely within 
an ODD threshold may contain local and short instances of very heavy rain that are outside 
the ODD   

• Testing of CAV performance in bad weather will need to characterise impactful weather 
thresholds from the point of view of a sensor, which is not necessarily the same as that of a 
human 

• Better confidence in sensor performance can be achieved by a series of linked tests & 
characterisation exercises at different levels (as per Figure 1) where sensors and full systems 
are tested both in reality and virtually. In this context “reality” may include testing in both the 
natural environment AND user-controlled environmental test facilities 

• Because weather demonstrates significant small-scale variability and sensor response has 
associated uncertainties, uncertainty calculation is critical and must be reflected appropriately 
in the virtual simulation 

• We have developed a draft outline framework and are currently filling in what each of the 
elements within the framework, and the links between them, need to look like to achieve 
confidence in outputs of the testing regime 

• The framework must relate clearly to ODD taxonomies  
 

More detailed thoughts – the “longer read” 
We are seeking to establish an end-to-end description of the linked tests, which we are calling our 
golden thread. 
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The golden thread is the minimal set of evidence that demonstrates that the vehicle as a whole (i.e. 
sensors, AI, response) is safe in (a given form of) adverse weather conditions. This requires a set of 
scenarios that define adverse weather conditions that might lead to safety problems.  
 
The scenarios need to be designed based on actual sensor characteristics and a consideration of what 
affects the signal that is sent to the AI. This could be reduction of power, spreading of directionality, 
delay or temporal spreading, extra reflections, etc., and will include uncertainty and error terms (i.e. 
statistical and deterministic aspects). It should be noted that the scenarios may not be the same as 
those that would cause a human driver problems, so the scenario definition needs to start from the 
sensor characteristics. The scenarios would consist of a set of weather conditions and objects (e.g. 
other vehicles, pedestrians, infrastructure etc) with trajectories or other behavioural definitions if 
required. 
 
Safety cannot be proved through physical testing alone, because testing can never cover the full range 
of conditions that might occur. Scenarios that can be tested physically should be tested physically, but 
this will not always be possible and will be costly when it is possible. Further, the cost is likely to be 
such that repeat testing (to assess variability and uncertainty) is likely to be impossible, meaning that 
confidence in the results is not complete. Hence there has to be virtual testing.  
 
Virtual testing requires models of sensor response in adverse weather conditions and models of 
vehicle response in adverse weather conditions. This requirement will have a weather component, a 
sensor model component, and a vehicle component. 
 
At the CAV scale, weather has a significant random component and needs to be simulated as a sample 
from some form of distribution (for instance for rain this would include droplet size distribution, 
intensity/velocity, duration, and possibly others). It should not be treated using average values, not 
least because the safety or otherwise of the system will be most tested at the extreme values. 
However, worst case scenarios are not the only useful information: testing extreme conditions can tell 
you about the highest risk rare incidents, but this approach doesn't answer "what can the vehicle cope 
with?" 
 
The sensor model cannot be developed assuming perfect physical performance: it needs to take real 
performance, and hence uncertainty, into account. It should be based on measurements not just 
physical theory. 
 
There also needs to be a method for defining how the weather affects the response of the sensor 
‘probe’ (e.g. radar pulse, lidar illumination, etc) to the environment. This can to a significant degree be 
physics based because the probe is generic with measurable characteristics (wavelength, scan speed 
etc) rather than sensor-specific although it is most likely that this model would also be validated by 
measurement. 
 
The sensor model will then have to take in the received weather-affected signal and process it in the 
way that the real sensor would, which will depend on things like integration time, field of view, etc. It 
is likely that some of this processing information will be commercially sensitive and hence not generally 
available, but it may be possible to obtain relevant information through a carefully designed test plan. 
 
Once the weather-affected signal is processed, a set of values equivalent to the (likely) real sensor 
signal will be passed to the AI. The response of the AI to the sensor data determines safety.  Safety 
may need to be determined over a prolonged time period as effects may be cumulative. It should be 
noted that the safety of the response of the AI also depends on the response of the vehicle in its 
entirety to the weather conditions and is not an unvarying yes/no criterion.  
 
We are aware that models of vehicle response in adverse weather conditions already exist, since 
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driving simulators are a mature technology. There are still open questions about the nature of the 
weather models used in these simulators: as noted above, weather is a random/high variability 
phenomenon and the weather models needs to use samples at appropriate space and time scales 
rather than relying on average statistics. 
 
All of these components have associated uncertainties, requiring that the virtual testing environment 
is essentially stochastic. In particular: 

• weather is significantly random, or at best highly varying on small time and space scales 

• sensor probe response to environment (e.g. for lidar & radar) may have an associated 
uncertainty, which may be correlated between sensors 

• random weather acts on random signal to produce random response 

• sensor processing adds random effects 

• vehicle response will have a random effect (which will probably encapsulate 
unknown/unknowable characteristics of the road/environment) 

 
In summary, the components of a testing framework would be: 

• scenarios that might cause problems 

• measurements of sensors  
o ideally including some under controlled weather-simulating conditions for validation 
o ideally including some full-car tests for validation too 

• models of sensors based on measurements, possibly guided by physical understanding during 
development 

• model of weather, including spatial and temporal characteristics of any defining parameters 
that will affect signal response 

• method of generating a weather-affected signal based on weather characteristics and sensor 
probe characteristics 

• model of processing of received signal so that weather-affected signal can be passed to AI 
 
One possible visualisation of all the above is given below: 
 

 
 
(*Wx = shorthand for weather) 
 
Figure 3: A representation of interlinked test environments for CAV sensors  
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The diagram will be discussed at the workshop, however the following may help with interpretation 
in the meantime: 
 
Calibration lab:  Testing of sensor performance against reference “targets” in idealised laboratory 
conditions i.e. in the absence of impactful weather. 
 
External environmental testbed:  Testing of sensor performance against reference targets, fully 
exposed to the elements.  This would include ancillary measurements of all the impactful 
meteorological parameters (e.g. rain droplet size distributions, wind, temperature etc).  Carries the 
advantage of sampling “real weather” but it is not controllable and requires the weather to come to 
the testbed site.   
 
Controlled environmental test facility: Often referred to as a “wet shed”. Testing of sensor 
performance against reference targets, exposed to manufactured/emulated weather (e.g. rain from a 
sprinkler system).  Carries the advantage of “controlling weather” however may not be able to 
reproduce realistic rainfall in terms of droplet size (although the nature of the rainfall in such facility 
may be measured). This may have significant implications if considering relative performance/sensor 
redundancy when testing combinations of sensors operating at different wavelengths (e.g. lidar & 
radar) or passive and active systems (e.g. camera & lidar).  
 
Virtual testing environment:  Testing of virtual realisations of sensors, sensor fusion & ADS (and ADAS) 
in modelled scenarios that attempt to include the weather. 
 
Many industries that involve construction of complex systems use a pyramid approach to testing, as 
illustrated in the following figure. This approach builds up confidence in the complete system by 
carrying out a large number of tests of the materials and individual components within the system, 
and progressively testing a smaller number of more complex sub-assemblies, before carrying out a 
small number of tests of the complete structure. The benefits of the approach include increased 
understanding of the sub-systems and a reduction in the number of the costliest full-scale tests.   
 

The aim and structure of the workshop 
Any Framework must be simultaneously both rigorous and practically usable to all stakeholders.  The 
workshop is designed for us to gain as much insight as we can from all attendees to ensure that is the 
case.   It will be broken down into three self-contained workshops covering the following topics 
 
1. Sensors and how weather conditions impact their performance 

including causes of weather-related degradation, maturity of understanding & multi-sensor 
aspects 
 

2. The Balance of tests and how to ensure transfer and traceability 
 including what the pyramid might look like, investment priorities, strengths/weaknesses of 
different tests 
 
3. Virtual testing and handing uncertainty 
 including pass/fail vs confidence levels, the role of simulation (including in characterising 
uncertainty) 
 

 
 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

Appendix C:  Walkthrough Calculation details 

 
Details of calculations of maximum detectable range 
The attenuation coefficients have been calculated such that the attenuation along a path in 
one direction is 

𝐼 = 𝐼0 exp −𝛾𝐿  
 
where I0 is the signal power leaving a point, L is the distance the laser beam has travelled, and 
γ is the attenuation coefficient. For a LiDAR, it is assumed that the signal travels in a straight 
line so the only reduction of power between the signal leaving the sensor and reaching the 
target is this attenuation. When the signal reaches the target, it is absorbed and scattered so 
that the scattered signal at a distance R is given by 
 

𝐼𝑆 =
𝐼0𝜎

𝑅2
exp −𝛾(𝐿 + 𝑅) 

where σ is scattering cross-section with units m2. When the scattered signal reaches the 
sensor, the amount of signal that enters the sensor depends on the optics, meaning that an 
extra factor of K (0 < K < 1) is introduced. Then 

𝐼𝑅 =
𝐼0𝐾𝜎

𝐿2
exp(−2𝛾𝐿) 

 
It is assumed for the purpose of this demonstration that no attenuation occurs in dry air (γ0=0) 
so if the minimum detectable signal power is known then the product Kσ can be calculated 
from the maximum detectable distance.  
 
If we know the maximum detectable distance in dry air, L0 say, and the attenuation coefficient 
for rain, and we want to calculate the maximum detectable distance when rain is present, LR 
say, then we can note that the signals in both cases must be at the minimum detectable level, 
so that  
 

𝐼0𝐾𝜎

𝐿0
2 exp(−2𝛾0𝐿0) =

𝐼0𝐾𝜎

𝐿𝑅
2 exp(−2𝛾𝐿𝑅) 

 
so that, as γ0=0,  LR is the solution to 

1

𝐿𝑅
2 exp(−2𝛾𝐿𝑅) =

1

𝐿0
2  

 
which is nonlinear and requires numerical solution.  
 
Values of the attenuation coefficient have been calculated as 6.4 km-1 for the Marshall-Palmer 
drop size distribution at 100 mm hr-1, and between 4.3 km-1 and 7.8 km-1 for a typical shower 
drop size distribution at 100 mm hr-1. For a maximum detectable distance of 110 m in dry air, 
these values equate to maximum detectable ranges of approximately 70 m, 78 m and 66 m 
respectively.  
 
Radar signals are governed by a different equation because the signal they emit is less 
focussed than a laser, so the beam spreading needs to be taken into account in both 
directions. The appropriate equation is 
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𝐼𝑅 =
𝐼0𝐶

𝐿4
exp(−2𝛾𝐿) 

 
where C is a constant (for a given sensor and target combination) with units m4 that includes 
the effects of signal wavelength, the directivity (antenna gain) of the emitted signal, target 
reflectivity, the ability of the sensor to capture the reflected signal, and other losses. Similarly 
to the lidar equation, the maximum detectable range for a situation with known attenuation 
coefficient can be calculated from 

1

𝐿𝑅
4 exp(−2𝛾𝐿𝑅) =

1

𝐿0
4 exp(−2𝛾0𝐿0) 

 
If once again the “dry” absorption is neglected (γ0=0), this simplifies to: 
 

1

𝐿𝑅
4 exp(−2𝛾𝐿𝑅) =

1

𝐿0
4  

 
The calculated attenuation coefficients for a 77 GHz radar are 8.3 km-1 for the Marshall-
Palmer drop size distribution at 100 mm hr-1, and between 5.9 km-1 and 10.4 km-1 for a typical 
shower drop size distribution at 100 mm hr-1. For a maximum detectable distance of 250 m in 
dry air, these values equate to maximum detectable ranges of 140 m, 158 m, and 128 m 
respectively. 
 
Details of calculations of beam pattern effects 
 
The effects of the presence of a radome and a radome covered with a water film on a radar 
beam shape have been simulated using finite volume analysis. The simulation has used a horn 
antenna of transmit and receive gain of 18.2 dB with vertical polarization. These parameters 
are typical for automotive radar systems. The horn is made of copper and the bumper is made 
of a material similar to polypropelene (relative electrical permittivity of 2.3), both of which 
are realistic choices. The radome size has been set at 4 mm thick and 30 mm square, which is 
more than 20 times the size of the antenna beam footprint when the distance between 
antenna and the radome is 30 mm so that the edge diffraction effects are suppressed. The 
radome, shown as a brown layer in figure C2, is set parallel to the transmitter horn at an offset 
of 30 mm, which is the typical distance between the transmitter and bumper for Continental 
radar. A second horn antenna is placed at 6 cm offset to receive the signal, effectively in the 
far-field.  
 
The simulated antenna shows excellent radiation performance and uniform radiation pattern 
in the 77 GHz frequency band, plotted in figure C1. The 3-dB beam width of the simulated 
horn antenna at 77GHz is about 22° and the antenna gain generally increases with the 
frequency.  
 
 
 
 
 
 
 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

 

 
 
(a) 

 
(b) 

Figure C1: (a) Horn antenna designed for operation at 77 GHz; (b) Realised gain radiation 
pattern at 77 GHz with no radome 
 

 
 
Figure C2: Configuration with transmit and receive antennas (yellow), radome (brown) and 
water layer (blue) 
 
The thickness of the water film, shown in blue in figure C2, has been varied between 0.1mm 
to 0.4mm in 0.1 mm steps. The calculated reflection and transmission coefficients are shown 
in figure C3 plotted against frequency. When the radome is not present (red curves in figure 
C3) there are minimal reflections. As the water film thickness increases, the transmission 
decreases (shown in the transmission coefficient plot) due to reflection and absorption of the 
signal by the water. 
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Figure C3: Reflection (upper plot) and transmission (lower plot) coefficients for various 
water film thicknesses plotted against frequency  
 
Figure C4 shows the radiation pattern of the antenna at 77 GHz for no radome, a dry radome, 
and a radome with a 0.4 mm layer of water. For this model the radome has been placed 10 
mm away from the antenna. The plots show that there is a significant back scatter component 
in the radiation pattern and distortion of the radiation pattern when the water film is present, 
which would reduce the maximum detectable range of the radar significantly. 
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Figure C4: Radiation pattern for the radar antenna at 77 GHz for different scenarios 
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Appendix D:  Sensor calibration 
 
Robust environment perception is one of the essential tasks which an autonomous vehicle must 
accomplish [1]. To achieve this goal, various sensors such as cameras [2], radars, LiDARs, and inertial 
navigation units are used, and information thereof is often fused. Essential tasks such as simultaneous 
localisation and mapping (SLAM), detection and tracking of moving objects, odometry, etc. are often 
improved by sensor fusion.  
 
A fundamental step in the fusion process is sensor calibration, both intrinsic and extrinsic. The former 
provides internal parameters of each sensor (e.g. focal length of a camera, bias in LiDAR range 
measurements), while latter provides relative transformation from one sensor coordinate frame to 
the other. The calibration can tackle both parameter groups at the same time or assume that sensors 
are already intrinsically calibrated and proceed with the extrinsic calibration. Additionally, temporal 
synchronisation of the sensors is sometimes performed within the calibration.  
 
Intrinsic parameters are related to the working principle of the sensor. Therefore, methods for finding 
intrinsic parameters do not share many similarities between different types of sensors. On the other 
hand, parametrisation of extrinsic calibration, i.e. homogeneous transformation, can always be 
expressed in the same manner, regardless of the sensors involved. Despite that, solving the extrinsic 
calibration requires finding correspondences in the data acquired by the sensors which can be 
challenging since different types of sensors measure different physical quantities. After 
correspondence registration, optimisation steps are performed to estimate the calibration 
parameters. While some methods require intrinsically calibrated sensors to find the extrinsic 
calibration, others perform optimisation on both parameter groups simultaneously. These methods 
typically try to satisfy some geometric constraints through minimisation of a problem-specific 
reprojection error. The geometric constraints involve nonlinearities which often cannot be solved 
analytically. To resolve that problem, estimators use iterative techniques to find the appropriate 
solution. Due to the nonconvexity of the problem caused by the nonlinearities, these methods have a 
risk of converging to a local minimum. To avoid that risk, some methods divide optimisation in initial 
rough estimates that guarantee near-optimal solutions followed by nonlinear iterative refinement 
step. The success of the optimisation is highly dependent on the provided data. An important step 
before the data acquisition is to determine minimal requirements on the dataset for which the 
problem becomes identifiable (or observable in case of dynamical systems).  
 
The calibration approaches can be target-based or targetless. In the case of target-based calibration, 
correspondences originate from a specially designed target, while targetless methods utilise 
environment features perceived by both sensors. The former has the advantage of the freedom of 
design which maximises the chance of both sensors perceiving the calibration target but requires the 
development of such a target and execution of an appropriate offline calibration procedure. The latter 
has the advantage of using the environment itself as the calibration target and can operate online by 
registering structural correspondences in the environment but requires both sensors to be able to 
extract the same environment features. Registration of structural correspondences can be avoided by 
motion-based methods, which use the system’s motion estimated by the individual sensors to 
calibrate them. These methods have two main advantages: (i) they rely less on the sensor’s operating 
principles and can be applied to different sensors, if a sensor can estimate its motion, (ii) unlike other 
methods, they can extrinsically calibrate sensors with nonoverlapping fields of view. 
 
In Appendix D of this report, the different calibration techniques for the most popular sensor 
technologies used in the automotive industry such as camera system, LiDAR and radar are discussed. 

 
1. Camera System 
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Cameras are passive sensors that utilise the light which goes through the lens and is detected at the 
optical sensor. They are a rich source of information with an affordable price that makes them 
commonly used in robotics and other fields. Due to their long presence and frequent usage, intrinsic 
camera calibration has been given a lot of research attention which resulted in camera description 
models and calibration techniques. While cameras with high distortion such as fisheye and 
omnidirectional cameras require more complex models, commonly used cameras with slight 
distortion are usually modelled as pinhole cameras with a previously rectified image as can be seen in 
the next section. This intrinsic parametrisation consists of distortion coefficients (e.g. radial distortion) 
and camera matrix formed by focal length, pixel scale factors, principal point and skewness between 
the axis. In order to retrieve depth information about the environment, two cameras are often rigidly 
connected to form a stereo vision system. Besides the intrinsic calibration of individual cameras, high 
precision of extrinsic calibration between the cameras is crucial for successful stereo reconstruction 
which will be described in the next section.  
 
Principle of Stereo Vision 
 
Assume the simplified configuration of two parallel looking 1D cameras with identical camera 
parameters as shown in Fig. 1.1. Furthermore, the basis, i.e. the straight line connecting the two 
optical centres of the two cameras, is assumed to coincide with the x-axis of the first camera. 
 
Then, the image plane coordinates of the projections of the point 𝑃(𝑥𝑐 , 𝑧𝑐) into the two images can 
be expressed, 
 

𝑢1 = 𝑓
𝑥𝑐

𝑧𝑐                                                                                                                                               (2.1) 

𝑢2 = 𝑓
𝑥𝑐−𝑏

𝑧𝑐                                                                                                                                                (2.2) 

 
where f is the focal length and b the length of the basis. 
 
The pair of image points that results from the projection of one object point into the two images is 
often referred to as conjugate points or homologous points. The difference between the two image 
locations of the conjugate points is called the disparity d. 
 

𝑑 = 𝑢2 − 𝑢1 = −𝑓
𝑏

𝑧𝑐                                                                                                                                               (2.3) 

 
Given the camera parameters and the image coordinates of two conjugate points, the 𝑧𝑐 coordinate 
of the corresponding object point P, i.e. its distance from the stereo camera system, can be computed 
by 
 

𝑧𝑐 = −𝑓
𝑏

𝑑
                                                                                                                                               (2.4) 
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Figure 1.1 Vertical section of a binocular stereo camera system 
 

The internal camera parameters of both cameras and the relative pose of the second camera in 
relation to the first camera (external camera parameter) are necessary to determine the distance of 
P from the stereo camera system. Thus, the tasks to be solved for stereo vision are: 
1. To determine the internal and external camera parameters and 
2. To determine conjugate points. 
 
The first task is solved by the calibration of the stereo camera system. The second task is the so-called 
stereo matching process. The multi-view surface reconstruction extends the basic stereo vision 
principle to more than one image pair. 
 
The way the cameras are placed influences the accuracy of the results that is achievable with the 
stereo camera system. The distance resolution ∆z, i.e. the accuracy with which the distance z of the 
object surface from the stereo camera system can be determined, can be expressed by: 
 

∆𝑧 = −∆𝑑.
𝑧2

𝑓.  𝑏
                                                                                                                                               (2.5) 

 
To achieve a high distance resolution, the setup should be chosen such that the length b of the basis 
as well as the focal length f are large, and that the stereo camera system is placed as close as possible 
to the object. In addition, the distance resolution depends directly on the accuracy ∆d with which the 
disparities can be determined. 

 
2. Stereo Camera System 
 
Using the images of a stereo camera, a 3D reconstruction of the real environment can be calculated, 
enabling a machine to see three-dimensionally. To calculate a 3D reconstruction of a scene, precise 
geometric dimensions of the stereo camera, called stereo camera parameters, are required. Examples 
of stereo camera parameters are the focal length, the pixel size, the lens distortion, and the position 
and orientation of the cameras. The stereo camera parameters are nearly impossible to survey with 
conventional measuring tools because the cameras would have to be dismantled, the required 
accuracy is difficult to reach, and the effort would be immense. The solution is algorithms that can 
calculate the stereo camera parameters from the images of the same stereo camera. These algorithms 
are called stereo camera calibration algorithms.  
 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

A technique using defined calibration objects like a printed chessboard pattern has been described in 
[3-5]. Calibration targets are frequently used due to numerous advantages. They simplify the 
correspondence registration step since the number and type of correspondences is known in advance 
which virtually eliminates the problems associated with outliers. Additionally, target-based methods 
can use a prior knowledge about the target which can enhance the calibration results. Therefore, 
target-based methods are generally more precise than the targetless. Properties of a well-designed 
target are (i) ease of detection and (ii) high localisation accuracy for all the sensors in the calibration. 
The former ensures the success of the correspondence registration, while the latter has great 
influence on the quality of the results given by the optimisation step. The calibration targets supplied 
by some of the major car manufacturers are shown in Fig. 2.2. The calibration method using planar 
target is flexible and convenient, with high calibration accuracy. It has been widely applied in camera 
calibration, but it is unsuited to synchronously complete the calibration of multiple cameras at 
different positions. Use of a spherical target allows a complete outer contour of the spherical target 
at any angle. Such a technique is suitable for the synchronous calibration of multiple cameras at 
different positions, but its calibration accuracy can hardly meet high-accuracy measurement 
requirements. Moreover, a certain requirement must be met in the location of the spherical target: if 
the location is too close to the centre of the camera, the calibration will be inaccurate. However, if it 
is too far, the contour acquisition and elliptic fitting may be subject to camera distortion, thereby 
affecting the calibration accuracy. A grid spherical target (GST), as shown in Fig. 2.3(a) which combines 
the strengths of the spherical and planar targets allows multiple cameras to shoot simultaneously and 
calibrate their respective intrinsic parameters, while achieving the same calibration accuracy as that 
using planar target [43]. During the calibration, the linear solutions of the intrinsic and extrinsic 
parameters are obtained from the elliptic curves of the latitude and longitude circles in the image. 
Based on the coordinates of the intersecting points of the elliptic curves of the longitude and latitude 
lines in the image and the lens distortion, the nonlinear optimization method is adopted to obtain the 
optimum solutions of the intrinsic and extrinsic parameters. 
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Figure 2.2 Calibration targets supplied by some car manufacturers 

 
Another approach is the calculation of stereo camera parameters without defined calibration objects 
in real-world environments. [6] and [7] use epipolar geometry and nonlinear optimisation or a Kalman 
filter for continuous recalibration. In [8] the detection of vanishing points in the image of a mono 
camera is used to calibrate a roadside camera. The algorithm from [9] calculates the radial lens 
distortion from single images via vanishing points. In [10] bundle adjustment is applied, where the 
camera parameters are calculated from an image sequence containing many images of a moving 
stereo camera. The reprojection error and an iterated extended Kalman filter is used in [11] for 
continuously calibrating a stereo camera from image sequences. The algorithm in [12] uses a 
combination of epipolar geometry, the reprojection error, and the trilinear constraint with an iterated 
extended Kalman filter for continuous calibration. In [13], the three algorithms using epipolar 
geometry, relative world point error, and absolute world point error were proposed. These allowed 
the calibration of a stereo camera with only the help of a measuring tape and the data sheet of the 
cameras.  
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(a) 

 
(b) 

Figure 2.3 Camera calibration targets [43] (a) Planar checkerboard target; (b) Grid spherical 
target [43] 

 
For autonomous cars, the calibration process can also be performed by means of road marks [28], 
such as lines [29-31] or dashed lines on the roadway [32], it being possible to use parking lines as the 
calibration pattern [33]. These methods allow the calibration process, where it is possible to 
recalculate the extrinsic parameters at different times and positions. The last group of methods is 
based on estimating the geometry of the roadway in front of the vehicle, which can be accomplished 
mainly in two different ways. Firstly, the three-dimensional information of the vehicle environment 
contained in the disparity map allows one to determine the position of the ground in front of the 
vehicle by means of different kinds of projections. While a second technique is based on the sampling 
of 3D points and subsequent adjustment to a plane [34], where both techniques can be used in 
outdoor applications [35,36]. Such methods allow one to find out the extrinsic parameters, avoiding 
the need for the calibration pattern or the road marks. Moreover, this allows recalculating the relative 
position of the vision system in real time while the vehicle is moving and adapting to changing 
parameters, as discussed above, such as vehicle load, acceleration or irregularities of the roadway. 
 
An optimal calibration technique should produce unbiased and minimum variance estimates of the 
camera parameters. In practice, this is quite difficult to achieve due to different error sources affecting 
the imaging process. Calibration techniques using a calibration object yields the least calibration error 
and it is recommended to use this approach in use cases where it is possible to do so. The calibration 
procedure in [14] utilizes circular control points and performs mapping from world coordinates into 
image coordinates and backward from image coordinates to lines of sight or 3-D plane coordinates 
using a calibration object. This technique is used to demonstrate the test case in section 2.4. The 
camera model used allows least squares optimization with the distorted image coordinates.  
 
For the calibration of the stereo camera system, each camera acquires multiple images of one or more 
calibration objects in different poses. It is not necessary that the calibration object is always visible in 
all poses for each camera. The only requirement is that the cameras can be “connected” in a chain by 
the calibration object poses as shown in Fig. 2.4. The camera setup between the acquisition of the 
calibration images and the acquisition of the stereo images of the object to be investigated should not 
be changed to preserve the calibration. Therefore, the cameras should be mounted on a stable 
platform. By taking multiple images of a calibration plate placed arbitrarily throughout the camera 
field of view, an explicit and precise 3D coordinate mapping of the field of view can be calculated and 
complex distortions can be corrected [14]. The internal and external camera parameters obtained 
from the calibration procedure map the image coordinates from the camera to real world coordinates. 

 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

 
Figure 2.4 Cameras are connected in a chain 
 

 
(a) 
 

 
(b) 

 
Figure 2.5 Coordinate systems of a multi-view camera setup: (a) default setup coordinate system 
located in the reference camera 0; (b) setup coordinate system moved to the coordinate system of 
the calibration plate 

 
The camera calibration information is stored in a camera setup model, which contains the internal 
camera parameters as well as the relative poses between the cameras. The default coordinate system 
of the stereo camera setup is identical to the coordinate system of the so-called reference camera of 
the setup, which is typically the camera with the index 0 (as shown in Fig. 2.5(a)). The poses of the 
other cameras and the reconstructed coordinates are computed relative to this camera. It is desirable 
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to specify the pose of the desired setup coordinate system as marked by the calibration plate in Fig. 
2.5(b) by moving the set-up coordinate system. This also allows a user to introduce a bounding box 
with respect to the calibration plate which should be tight around the volume of interest. The surface 
fragments lying outside the bounding box are clipped and are not returned in the final surface 
reconstruction. A too large bounding box results in a large difference between the minimum and 
maximum disparity and it would slow down the execution of the algorithm. A too small bounding box 
may result in clipping valid surface areas. 

 
Reconstruction of the 3D Surface 
 
The underlying surface reconstruction algorithm is based on fusing the information obtained from 
multiple binocular stereo depth maps. The objects in the scene should expose certain surface 
properties in order to make the scene suitable for the dense surface reconstruction. First, the surface 
reflectance should exhibit Lambertian properties as closely as possible (i.e. light falling on the surface 
is scattered such that its apparent brightness is the same regardless of the angle of view). Secondly, 
the surface should exhibit enough texture, but no repeating patterns. 
 
The proper selection of image pairs has an important role for the general quality of the surface 
reconstruction. On the one hand, camera pairs with small base line (small distance between the 
camera centres) are better suited for the binocular stereo disparity algorithms. Hence, pairs with small 
base lines should be preferred for acquiring accurate depth information of the scene. On the other 
hand, the pairs should provide different points of view, such that if one pair does not see a certain 
area of the surface, it is covered by another pair. The number of image pairs linearly affects the 
runtime of the reconstruction algorithm. Therefore, use an optimum number of image pairs in order 
to handle the trade-off between completeness of the surface reconstruction and reconstruction 
runtime. Finally, the images pairs should represent a static scene, or they must be taken 
simultaneously to accurately reconstruct the surface. 
 
The algorithm uses a multigrid stereo matching based disparity operator for each image pair from a 
predefined list of image pairs to calculate disparity and distance values for image parts that contain 
no texture (as long as these parts are surrounded by significant structures between which an 
interpolation of values is possible). The most important advantages of multigrid stereo is that it 
interpolates 3D information for areas without texture based on the surrounding areas and in particular 
for edges, the accuracy in general is higher than for correlation-based stereo, and the resolution is 
higher than for correlation-based stereo, i.e. smaller objects can be reconstructed. The disparity 
information is converted to X, Y, and Z images coordinate in the coordinate system of the respective 
camera. Then, for each 3D point, the normal vector is calculated. In the next step, the X, Y, and Z 
images as well as the normal vectors are transformed into the common coordinate system that is 
specified in the camera setup model. Finally, the transformed coordinate images are sub-sampled and 
stored in a common point cloud together with the points and normals extracted from other image 
pairs. The so-obtained point cloud can be additionally meshed in a post-processing step based on a 
Poisson solver. It creates a water-tight mesh, therefore surface regions with missing data are covered 
by an interpolated mesh [15]. The point cloud obtained as described above can be processed further 
to obtain a preferably smooth surface while keeping form fidelity. To this end, the bounding box is 
sampled, and each sample point is assigned a distance to a so-called iso-surface (consisting of points 
with distance 0). The final distance values (and thus the iso-surface) are obtained by minimizing an 
error function based on the points resulting from pairwise reconstruction. This leads to a fusion of the 
reconstructed point clouds of all camera pairs [16]. 
 
The processed point cloud is noisy as multi-view stereo methods are much more susceptible to 
produce noisy depth estimates due to image imperfections, triangulation inaccuracy, depth 
quantisation, as well as outliers due to matching ambiguities and non-diffuse surfaces. Most multi-
view stereo methods refine the reconstructed depth maps, and often this is integrated into the depth 
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estimation stage and formulated as a (global) optimization problem [17,18]. Furukawa et al. [19] use 
a filter based on quality and visibility measures for merging points while handling errors and variations 
in reconstruction quality. The denoising step can also be implemented as a post-processing step for 
the 3D point cloud. Two popular common outlier removal approaches are the statistical and 
geometric-based filters [20]. The Statistical Outlier Removal (SOR) filter firstly computes the average 
distance of each point to its neighbours through k-nearest neighbours searching function. A point is 
considered an outlier if this distance is larger than the average distance derived from all points in the 
data set plus t times of the standard deviation (σ) of the average distance. Thus, the outlier removal 
was controlled by two threshold k and t. The geometric-based filter considers the distance from a 
given point to the object’s surface. The algorithm locally fits a plane through each point in the data 
set, which was based on neighbour points of the given point extracted by either kNN search or a range 
search method.  

 
Multi-view Stereo Imaging: Precision Agriculture Scenario 
 
Multi-view stereo imaging was utilised to capture and reconstruct an indoor and outdoor based wheat 
plot to demonstrate its application in wheat phenotyping for precision agriculture. The system was 
chosen as the trade-off technology when compared with LiDAR and Structured laser light scanner in 
terms of cost, resolution and capture time.  

 

 
(a) 

 
(b) 

Figure 2.6 Mobile 18-camera multi-stereo imaging setup (a) One of the camera pair; (b) Entire set 
up for imaging the outdoor wheat plot 

 
A NPL in-house built 18-camera multi-view stereo system utilising 9 camera pairs was used to scan the 
indoor wheat heads (1m x 1m) in the NPL Agritech laboratory and outdoor wheat crops (2m x 2m) in 
the NPL outdoor Agri-plot as shown in Fig. 2.6(a) and 2.6(b). Basler cameras (8x 2.3MP and 4x 12MP) 
were used to capture the images of the wheat plant as shown in Fig. 2.7(a) and 2.7(b). Prior to 
mounting on to the frame, the cameras’ internal parameters were calculated using the calibration 
routine in HALCON [21]. The routine involves the use of a 32 cm × 24 cm calibration plate consisting 
of 5 mm white circles arranged hexagonally on a black background, with the centre to centre 
separation of each circle being 1 cm [22]. Images of the calibration plate placed in a variety of positions 
and orientations are taken. By comparing the size and position of the dots seen across in the camera’s 
field of view from what is expected the software calculates the: focal length, radial lens distortion 
parameters, decentring lens distortions, the centre of the radial lens distortion, and sensor’s physical 
dimension. A different larger calibration plate was used to calculate the external camera parameters 
of position and orientation of all the 12 cameras. The cameras were positioned and mounted on the 
mobile phenotyping platform so that all the 12 cameras were able to see the wheat plant and the 
calibration plate. With an exposure time of 5 ms, images from the 12 cameras were captured using a 
routine written in LABVIEW. The captured images were processed using the multigrid stereo matching 
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algorithm implemented in HALCON to produce a point cloud as shown in Fig. 2.7(c) and 2.7(d).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.7 Images of (a) Indoor wheat heads; (b) Outdoor wheat crops and reconstructed raw 3D 
point cloud (c) Indoor wheat heads; (d) Outdoor wheat crops 

 
The point clouds also contain significant noise and outliers which could be reduced by simple 
denoising techniques Statistical Outlier Removal filter which is implemented in CloudCompare 
software [23]. 
 
The calibration techniques and the 3D point cloud reconstruction methods demonstrated in the 
precision agriculture scenario can also be extended to an autonomous vehicle application with ease. 
Instead of multi-view stereo imaging, it would be a binocular stereo imaging involving a single camera 
pair. 

 
3. LiDAR 
 
Lidar (LIght Detection And Ranging) or Ladar (LAser Detection And Ranging), are optical equivalents to 
radar, using pulses of visible or near-infrared light to detect and measure distances to them instead 
of microwaves or radio waves. Lidars measure distances to objects by emitting pulses of light from a 
laser toward the object and measuring the time-of-flight, t, taken for the pulse to travel between the 
laser, the object’s surface, and the sensor that detects the reflected pulse. The distance, d, is then 
simply calculated by ½ × t × c, where c is the speed of light and factor of a half is required to account 
for the laser pulse traveling the distance twice (Fig. 3.1).  
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Figure 3.1: Time of flight of a laser pulse emitted from lidar, reflecting off an object, and being 
detected by Lidar’s sensor 

 
In contrast to cameras, lidars are an active imaging system that use their own light source rather than 
relying on ambient lighting, allowing them to function in low light conditions. To produce a 3D image 
(point cloud) reconstructing the lidar’s environment, the surrounding surfaces are scanned by the 
laser beam either by moving the laser and sensor or by moving a mirror that reflects the laser beam. 
Common implementations of movement in lidars used for autonomous vehicle and robotic 
applications are swivelling, which allows a limited field of view to be scanned, and rotating, which 
allows for a full 360° scan (Oberländer et al., 2015; Sheehan et al., 2012). Building up a point cloud 
using a single laser beam is slow. Data acquisition and scan rates can be increased by using multibeam 
lidars i.e. lidars that use more than one laser. For example, the single laser Ocular Robotics RE-05 
(Ocular Robotics, n.d.) can achieve a sample rate of 30 thousand points per second whilst the 64-laser 
Velodyne HDL-64E (Velodyne Lidar, n.d.) can reach rates up to 2.3 million points per second.  
 
As multibeam lidars have become more widely used for applications such as autonomous vehicles, 
robotics, and surveying, the last decade has seen an increase in publications related to multibeam 
lidar calibration. The challenge is unique due to the requirement of scaling the procedure to the many 
lasers used in a simple and time efficient manner (Levinson and Thrun, 2014).  

 
Intrinsic Calibration 

 

 
Figure 3.2: Description of spherical coordinates 
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Various implementations for intrinsic calibration have been given for rotating multibeam lidars in the 
literature (Atanacio-Jiménez et al., 2011; Bergelt et al., 2017; Chen and Chien, 2012; Levinson and 
Thrun, 2014; Muhammad and Lacroix, 2010; Sheehan et al., 2012). At its simplest the implementations 
involve scanning either calibration targets or the surrounding environment itself, and then optimising 
the lidar’s intrinsic parameters so that the resulting point cloud agrees well with the ground truth. 
Variations between the works arise from the choice of parameters to calibrate, method used to locate 
any calibration targets, the optimisation routine, and whether the lidar is stationary or moving. 
 
Swerving and rotating lidars take measurements in spherical coordinates: DToF , the time-of-flight 
distance between the lidar and object, θ, the rotation angle of the lidar when the measurement was 
taken, and φ, the elevation angle of the laser from the horizon (Fig 3.2). The conversion of the spherical 
(DToF , θ, φ) coordinates into cartesian (Dx, Dy, Dz) coordinates requires the intrinsic parameters be 
considered. In some of the earliest attempts to calibrate a stationary rotating multibeam lidar, 
(Atanacio-Jiménez et al., 2011; Chen and Chien, 2012; Muhammad and Lacroix, 2010) chose five 
intrinsic parameters (Fig. 3.3) to characterise each of the 64 lasers in the Velodyne HDL-64 lidar:  

• Distance correction, Dcorr: Correction to the measured time-of-flight distance, DToF, due to 
timing delays in the lidar’s electronics and data processing 

• Rotational correction, θcorr: Correction to rotation angle, θ, due to manufacturing differences 
in the lasers’ positions 

• Elevation correction, φcorr: Correction to elevation angle, φ, due to manufacturing differences 
in lasers’ positions 

• Vertical offset, VO: Vertical displacement of lasers from lidar’s origin, typically near the base 

• Horizontal offset, HO: Horizontal displacement of lasers from lidar’s origin, typically the 
rotational axis 

 

 
Figure 3.3 Intrinsic parameters for a single laser in a rotating multibeam lidar. Diagram modified 
from (Muhammad and Lacroix, 2010) 
 
The conversion equations then take the following form: 

 
𝐷 = 𝐷𝑇𝑜𝐹 + 𝐷𝑐𝑜𝑟𝑟 

𝐷𝑥𝑦 = 𝐷 ⋅ cos(𝜑 + 𝜑𝑐𝑜𝑟𝑟) − 𝑉𝑂 ⋅ sin(𝜑 + 𝜑𝑐𝑜𝑟𝑟) 

𝐷𝑥 = 𝐷𝑥𝑦 ⋅ sin(𝜃 + 𝜃𝑐𝑜𝑟𝑟) − 𝐻𝑂 ⋅ cos(𝜃 + 𝜃𝑐𝑜𝑟𝑟) 
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𝐷𝑦 = 𝐷𝑥𝑦 ⋅ cos(𝜃 + 𝜃𝑐𝑜𝑟𝑟) + 𝐻𝑂 ⋅ sin(𝜃 + 𝜃𝑐𝑜𝑟𝑟) 

𝐷𝑧 = 𝐷 ⋅ sin(𝜑 + 𝜑𝑐𝑜𝑟𝑟) + 𝑉𝑂 ⋅ cos (𝜑 + 𝜑𝑐𝑜𝑟𝑟) 
 
According to (Muhammad and Lacroix, 2010), the choice of calibration environment and target should 
be based on the type of lidar system being used, the parameters being calibrated and the practicalities 
involved in performing the calibration. Planar surfaces such as the walls in the lidar’s surrounding 
environment (Bergelt et al., 2017; Chen and Chien, 2012; Muhammad and Lacroix, 2010) or in a 
specially setup space (Atanacio-Jiménez et al., 2011) may be used as a calibration target. The existing 
walls of a building at a test site are advantageous due to the minimal setup required and their large 
surface area provide many data points in the point cloud for target detection and the calibration 
process. When using planar surfaces, scanning just the surfaces allows for the calibration of the laser’s 
orientation only, but by including straight edges, the laser’s position can be calibrated too. 
Alternatively, planar boards can be used as can poles with reflective markers (Gao and Spletzer, 2010; 
Xue et al., 2019), although these options appear most often for extrinsic calibration which will be 
covered later. Poles have the advantage of portability, but there is a sacrifice in the amount of data 
captured due to the pole’s smaller surface area.  
 
Several calibration targets should to be recorded (Fig. 3.4), ideally located at a range of positions and 
distances to ensure the calibration is independent of any position and distance related biases the lidar 
may have (Bergelt et al., 2017; Muhammad and Lacroix, 2010). Additionally, it is noted by (Chen and 
Chien, 2012) that a number of scans should be carried out to remove temporal noise. 

 

 
Figure 3.4 Four walls (coloured red) used as planar calibration targets in (Bergelt et al., 2017). The 
location of the lidar is marked by the letter “V” 

 
Once the lidar’s environment has been scanned, the targets are segmented and an optimisation on 
the intrinsic parameters can be performed to produce a best fit to the targets’ surfaces. The cost 
function used to quantify the “goodness” of the fit is based on the mean distances of the points to the 
targets’ surfaces (Bergelt et al., 2017; Chen and Chien, 2012; Muhammad and Lacroix, 2010).  
 
Targetless procedures have also been reported (Levinson and Thrun, 2014; Oberländer et al., 2015; 
Sheehan et al., 2012) and are able to use any static planar or freeform surface situated in the lidar’s 
environment. These will be explained in more detail in the Extrinsic Calibration subsection, but in lieu 
of fitting sections of the point cloud to specific calibration targets, these works attempt to maximise 
the, as (Sheehan et al., 2012) terms it, “crispness” of the whole point cloud (Fig 3.5). They do this by 
minimising cost functions based on the Rényi Quadratic Entropy (Oberländer et al., 2015; Sheehan et 
al., 2012) or an “energy function” (Levinson and Thrun, 2014) similar to one used in Iterative Closest 
Point (ICP) algorithms that match overlapping point clouds together. These targetless procedures are 
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widely used for extrinsic calibration, although some works such as (Levinson and Thrun, 2014; 
Sheehan et al., 2012) apply them to intrinsic calibration.  

 
Figure 3.5: A lidar scan of a room (left) before and (right) after intrinsic parameter calibration was 
carried out by (Sheehan et al., 2012) to maximise the point clouds “crispness” 

 
By carrying out their intrinsic parameter calibration, users can expect to obtain improvements in 
measurement accuracy over using the factory provided calibration. For example (Muhammad and 
Lacroix, 2010) observed a 36% reduction in the standard deviation of measurements to a target 18 m 
away from 2.2 cm to 1.4 cm. Similarly, (Chen and Chien, 2012) (Fig. 3.6) saw a reduction in the 
standard deviation of 41% from 2.37 cm to 1.39 cm. And (Bergelt et al., 2017) were able to reduce the 
standard deviation by 38% from 4.0 cm to 2.5 cm.  

 

 
Figure 3.6: A lidar scan of a flat wall (a) using factory calibration parameters and (b) after re-
calibration. A reduction in the variation of distances can be seem. Image taken from (Chen and 
Chien, 2012) 

 
Extrinsic Calibration 
 
Procedures for extrinsic calibration can be based on those previously mentioned for intrinsic 
calibration i.e. making use of planar surfaces (e.g. walls and ground) as targets (Atanacio-Jiménez et 
al., 2011; Jiao et al., 2019a; Li et al., 2019) and optimising the relevant parameters to obtain the best 
fit. These procedures are extended to calibrate the positions of multiple lidar systems to allow 
accurate merging of multiple point clouds into one, and accurate positioning of the point cloud in a 
vehicle’s frame of reference. Differences in the procedures result from whether the lidar is required 
to be static or be in motion, and whether extra data is required from external sensors e.g. inertial 
measurement units (IMUs) or GPS.  
 
The target-based procedure proposed by (Li et al., 2019) for a single lidar implemented a two-step 
approach to transforming the point cloud’s frame of reference from the lidar to the vehicle (Fig. 3.7). 
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The only targets required are a flat horizontal ground and one vertical planar surface. In the first step, 
a RANSAC based fitting algorithm is used to locate the ground plane in the point cloud. The plane is 
used to determine the height of the lidar above the ground and the lidar’s rotational orientation i.e. 
pitch, roll and yaw with respect to the ground. The data is used in translation and rotation matrices to 
relocate the point cloud’s reference frame from the lidar to the ground. In the second step, the fitting 
algorithm is applied to the vertical surface to determine the rotation matrix to orient the point cloud 
from the ground to the vehicle. The translation matrix to move the point cloud from the ground to the 
vehicle’s frame of reference is determined by manual measurement.  

 

 
Figure 3.7: Two step procedure taken by (Li et al., 2019) to transform the point cloud’s reference 
frame from the lidar to the vehicle  
 
For calibrating multiple lidar systems, a selection of target-based procedures include (Gao and 
Spletzer, 2010; Heide et al., 2018; Jiao et al., 2019a, 2019a; Xue et al., 2019). (Jiao et al., 2019a) has a 
strict requirement of needing “three linearly independent planar surfaces” which in practice can be a 
wall corner. Demonstrating with a dual-lidar setup, the two walls and the ground are scanned and a 
RANSAC based algorithm is used to find the three planes. The authors then perform an optimisation 
to minimise the distance between corresponding planes in each lidar’s point cloud to obtain the 
relative translational and rotational angle between the two lidars. By applying the procedure, the 
authors could recover the extrinsic parameters of a dual-lidar system with rotation errors less than 
2.9° and translational errors less than 10 cm. In a similar manner, (Xue et al., 2019) showcase an 
extrinsic parameter procedure for two lidars using two poles stickered with retroreflective tape. The 
retroreflective tape allows the poles to be easily segmented in the point cloud, from which straight 
lines are fitted to the poles. The relative transformation data between the two lidars is then found by 
minimising the difference between the lines in both lidars. 
 
The approach taken by (Heide et al., 2018) allows more than two lidars to be calibrated. Using initial 
estimates of each lidars’ extrinsic parameters, allows all the point clouds to be referenced to the same 
origin. Each point cloud is cleaned by removing outlier points, a pair of point clouds is chosen, and a 
Generalized Iterative Closest Point (GICP) algorithm (Segal et al., 2009) is applied to register matching 
features before the point clouds are merged. The merged point cloud is then paired with another 
point cloud and the process repeated until all lidars’ point clouds have been merged together. The 
order of pairing and merging is chosen to produce the largest overlapping field of view in the final 
point cloud. (Heide et al., 2018) state that at least two or three planar surfaces should be within each 
overlapping field of view to obtain a good calibration. When evaluating the procedure with a setup 
involving three lidars and a commercial digger, the authors found the procedure capable of recovering 
the distance between two of the lidars to within 3 cm of the ground truth. The final step, relocating 
the reference frame to that of the vehicle, is achieved by applying GICP to merge the merged point 
cloud with a point cloud of the vehicle. 
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Targetless methods for single and multilidar setups have been reported by (Jiao et al., 2019b; Levinson 
and Thrun, 2014; Oberländer et al., 2015). All three works require the lidar(s) to be moved whilst the 
lidars are scanning as part of the process for determining the extrinsic parameters. For a single lidar, 
(Levinson and Thrun, 2014)’s procedure utilises the knowledge that the points in a moving lidar’s static 
surroundings will be scanned more than once and the readings of those points will not be randomly 
distributed in space. The lidar’s relative position and motion data is tracked with either an IMU, GPS 
or wheel encoder, and the data used to provide a local reference frame for each lidar scan. Without a 
calibration target to fit to, the procedure defines an “energy function” that is calculated for the whole 
point cloud. The energy function sums up the positional differences of each point measured by a laser 
beam with respect to the neighbouring points measured by the same beam and neighbouring beams. 
The extrinsic parameters are then obtained by minimising the energy function. Using data from 
15 seconds of movement, (Levinson and Thrun, 2014) were able to determine a lidar’s translational 
and rotational orientation with respect to the vehicle to within 1 cm and 0.03° of the measured values. 
A downside to relying on external devices to measure motion is the possibility of measurement drift 
as seen by (Levinson and Thrun, 2014) which effects the accuracy of the calibration. 
 
In contrast, (Jiao et al., 2019b) was able to calibrate mutlilidar setups using point cloud data alone, 
without additional positional data from an IMU etc. In their work, motion is initially estimated by 
comparing line and edge features in each successive point cloud using the LeGO-LOAM algorithm 
(Shan and Englot, 2018). Each lidars’ extrinsic parameters are then calculated from their estimated 
motions. As an example (Fig 3.8), at time steps k-1 and k, two lidars, a and b, have a relative 
transformation between them denoted by a matrix 𝑇𝑏

𝑎  consisting of the relative translation and 
rotation. There also exists a transformation matrix relating the lidars’ positions and orientations 

between the time steps, 𝑇𝑎𝑘

𝑎𝑘−1 , for lidar a and 𝑇𝑏𝑘

𝑏𝑘−1, for lidar b. The extrinsic parameters can be 

determined by solving the equation: 

𝑇𝑎𝑘

𝑎𝑘−1Tb
a = Tb

a𝑇𝑏𝑘

𝑏𝑘−1. 

 

 
Figure 3.8: Diagram from (Jiao et al., 2019b) explaining the transformation between lidars a and b, 
and also the transformations they experience between time steps k-1 and k  
 
The calculated parameters are refined further by applying constraints based on the features within 
the point cloud. RANSAC fitting of the ground plane allows the lidar’s height to be determined, and 
ICP based registration of features between point clouds taken at different time steps is used to 
constrain the extrinsic parameters. Evaluating their procedure with a three-lidar setup, the (Jiao et al., 
2019b) found the determined translational and rotational errors to be less than 1 cm and 2.3° 
respectively from the ground truth.  
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4. RADAR 
 
Radars are active sensors which, similarly to the LiDAR, emit an electromagnetic signal and determine 
the range of objects in the vicinity based on the returned echo. Although being frequently used in 
automotive applications due to their low price and robustness, extrinsic radar calibration has not 
gained much research attention. The existing methods are all target-based since, for all practical 
means and purposes, the targetless methods are hardly feasible due to limited resolution of current 
automotive radar systems, as the radar is virtually unable to infer the structure of the detected object 
and extract features such as lines or corners. Current radars have no elevation resolution while the 
information about the detected objects they provide contains range, azimuth angle, radar cross 
section (RCS) and range-rate based on the Doppler effect. Although having no elevation resolution, 
radars have substantial elevation FOV which makes the extrinsic calibration challenging due to the 
uncertainty of the measurements. 
 
Concerning automotive radars, common operating frequencies (24 GHz and 77 GHz) result with 
reliable detections of conductive objects, such as plates, cylinders and corner reflectors, which are 
then used in intrinsic and extrinsic calibration methods [37]. Wang et al. [38] used a metal panel as 
the target for radar-camera calibration. They assume that all radar measurements originate from a 
single ground plane, thereby neglecting the 3D nature of the problem. The calibration is found by 
optimising homography transformation between the ground and image plane. In contrast, Sugimoto 
et al. [39] considered the 3D nature of the problem. Therein, they manually search for detection 
intensity maximums by moving a corner reflector within the FOV. They assume that detections lie on 
the radar plane (zero elevation plane in the radar coordinate frame). Using these points, a 
homography transformation is optimised between the radar and the camera. The drawback of this 
method is that the maximum intensity search is prone to errors, since the return intensity depends on 
several factors, e.g., target orientation and radar antenna radiation pattern which is usually designed 
to be as constant as possible in the FOV.  

 
RADAR KPIs and test bed definition 
The following KPIs have been identified in order to characterise the Radar sensor for automotive 
applications: 
A. Range resolution: Is the capability to discriminate two different targets in different ranges, it is 

inversely proportional to the transmitted bandwidth and provides a fundamental capability for 
the radar sensor. 
Test bed definition:  In order to test and calibrate the range resolution, two targets spaced in 
range should be used. The range spacing of the two targets should be smaller than the nominal 
range resolution, in this case the test should demonstrate (by inspection of the range profile) that 
the radar is not able to discriminate the two targets in range. The test should be then performed 
with targets spaced in range of the nominal range resolution. In this case the test should 
demonstrate the capability to discriminate the two targets in range (by inspection of the range 
profile). In the case that it would not be possible to discriminate the targets in range, then 
additional tests should be made increasing the spacing in range between the targets every time 
by 0.5 times the nominal range resolution until it becomes possible to discriminate the two 
targets, the minimum distance between the two targets when these can be discriminated will 
define the actual range resolution of the sensor. 
Required equipment: Radar Echo Generation system (examples provided in reference Radar 
[1]).  The operating principles of such a device are illustrated in Figure 4.1. The radar sensor is 
transmitting a signal and listens for echoes from possible targets in the area. The Radar Echo 
Generator receives the radar signal and generates an echo with shifted delay, frequency and 
amplitude compared to the original signal to simulate a target in different distance, speed and 
size (RCS) respectively. 
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Figure 4.1 Operating principles of a Radar Echo Generator device (Courtesy dSpace [1]) 

 
B. Angular resolution: Is the capability to discriminate in angle the position of the target, in 

conjunction with the range position provides the localization of the target. It can be in both 
Azimuth and Elevation angles, even if most of the sensors currently available provide angular 
discrimination in Azimuth only, and is achievable through the use of multiple receiving channels. 
Test bed definition:  In order to test and calibrate the angular resolution, two targets closely 
spaced in angle from the sensor should be positioned in front of the sensor. The angular spacing 
of the two targets should be smaller than the nominal angular resolution of the sensor. In this 
case the test should demonstrate (by inspection of the range/angle map) that the radar is not able 
to discriminate the two targets in angle. The test should be then performed with the targets 
spaced in angle of the nominal angular resolution of the sensor. In this case the test should 
demonstrate the capability to discriminate the two targets in angle. If the sensor is not able to 
discriminate the targets in angle in this case, then the test should be re-iterated increasing the 
spacing of 0.5 times the nominal angle resolution until it becomes possible to discriminate the 
two targets. The minimum angular separation between the two targets when these can be 
discriminated will define the actual angular resolution of the sensor. An example of such 
measurement is show in Figure 4.2 
Required equipment: Two Radar Echo generation systems would be required, as these have a 
single output channel and spatial/angle separation of the artificial echoes can be only generated 
by physically separating the echo generators’ antennae. 

 
Figure 4.2 Example of angular resolution being measured by increasing the angle difference 
between targets A and B with the radar and finding the minimum that the sensor can separate the 
two targets 

 

A 

B 𝛷𝑟𝑒𝑠  
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C. Speed resolution: Is the capability to discriminate targets with different speeds, corresponds to 
the minimum speed that targets need to differ in order be separated in speed. The relevant 
component of the speed is the component of the target velocity vector lying on the Line at 90 
Azimuth and 0 angle degrees (perpendicular to the Line of Sight between the radar and the scene). 
The speed resolution is directly proportional to the Doppler resolution of the sensor that depends 
on the Coherent Processing Interval (CPI) that the sensor uses to perform the Doppler processing. 
Test bed definition: In this case the two targets with different radial velocities be used in order to 
observe the sensor’s output in terms of estimated target velocities. The speed difference between 
the two platforms should be equal to the nominal speed resolution of the sensor. The estimated 
two speeds of the targets should be different and equal to the ground truth speed. If it is not 
possible to obtain different speeds the procedure should be re-iterated increasing the relative 
speed separation between the two targets of 0.5 times the nominal sensor speed resolution until 
it is possible to discriminate the targets in speed. The speed separation between the targets when 
they can be discriminate will define the actual sensor speed resolution.  
Required equipment: Radar Echo Generation system. 

 
D. Maximum detectable range: Is the maximum distance at which the radar sensor can detect a 

target while respecting the desired false alarm probability. Depends on a range of design 
parameters, including emitted power, operating frequency, processing gain, antenna gains as well 
as processing requirements and environmental conditions. It is generally defined assuming a 
nominal target reflectivity (Radar Cross Section-RCS), a human has an RCS of 1 square meter. 
Test bed definition: In order to test the maximum detectable range a target of known reflectivity 
(RCS) should be used to perform the testing. The target should be positioned at a range 1m closer 
than the nominal maximum detectable range of the sensor. If the target can be the detected, then 
the target should be moved further away than 1 m until it is no longer detected. Similarly, if the 
target cannot be detected at the first measurement then it should be moved 1 m closer until it 
gets detected. The furthest range at which the target can be detected defines the sensor’s 
maximum detectable range. The same procedure can be performed with multiple targets of 
different RCSs in order to provide a full characterization depending on the target’s size and 
material. 
Required equipment: Radar Echo Generation system, however, as these systems have limited 
minimum range and maximum ranges possible to setup in the artificial target’s generation in some 
cases it will be required to use 1 corner reflector as target with a known RCS. Corner reflectors are 
passive devices used to directly reflect radio waves back toward the emitting source making them 
very useful for calibrations. Examples of corner reflectors with different RCS are shown in Figure 
4.3 
 

 
Figure 4.3 Examples of corner reflectors 
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E. Minimum detectable range: Is the minimum distance at which the radar can detect a target. 

Typical radar sensors for autonomous systems exploiting FMCW modulations do not have a 
nominal minimum detectable range as in principle it can be 0 m. 
Test bed definition: The minimum detectable range can be tested using a target of known RCS 
(i.e.1 square meter) placed in proximity of the sensor (1 m further away than the nominal 
minimum detectable range) and moved towards the sensor until it is no longer detected (0.1 
meters for each measurement). The closest range at which the target can be detected successfully 
will define the actual minimum detectable range of the sensor. 
Required equipment: Radar Echo Generation system.  These systems can have limited minimum 
range that can be emulated by the artificial targets, and it is generally higher than typical nominal 
minimum ranges of automotive radar sensors, then a corner reflector should be used.  

 
F. Maximum unambiguous speed: Is the maximum speed that the sensor is able to measure 

unambiguously, this parameter depends on the transmitted waveform characteristics and in 
particular on the operating frequency and the Pulse Repetition Frequency that defines the 
sampling frequency in which the Doppler returns from the targets would be sampled. 
Test bed definition: In order to test the maximum unambiguous speed, the test should be 
performed in a similar environment as described for the Speed Resolution. In this case a single 
moving target should be used. The target speed should be firstly set as plus or minus the nominal 
absolute value of the maximum unambiguous speed of the sensor, if it cannot be measured 
properly then the speed should be decreased in modulus by 0.5 m/s until the speed is measured 
correctly. Similarly, if the nominal maximum unambiguous speed can be measured then the test 
should be re-iterated with a speed of 0.5 m/s larger in modulus until the speed is correctly 
measured. The maximum speed that can be measured unambiguously will define the actual 
maximum unambiguous speed. 
Required equipment: Radar Echo Generation system. However in case the nominal maximum 
detectable speed is higher than the maximum speed that can be emulated by the Radar Echo 
Generation system then the latter should be assumed as the maximum “certified” detectable 
speed as creating real targets at speeds in order of 100s of km/h is not practical and safe.  

 
G. Minimum detectable speed: Is the minimum speed that the sensor can measure, it is proportional 

to the minimum detectable Doppler sensor that depends on the Coherent Processing Interval (CPI) 
that the sensor uses to perform the Doppler processing. 
Test bed definition: The minimum detectable speed will be defined by the speed resolution of the 
sensor. The test for speed resolution will provide also this value. 
Required equipment: Radar Echo Generation system. 

 
H. Update rate/Responsiveness: Is the rate at which the sensor provides its measurement outputs 

in terms of detections, targets’ parameters estimation and tracking. 
Test bed definition: In order to test the sensor’s Update rate and Responsiveness, the rate of the 
outputs of the estimated target’s parameters should be measured in a controlled environment. 
The sensor’s output in terms of detection maps (Range-Doppler, Range-Angle) should be stored 
for an acquisition of a fixed duration (i.e. 10s). The acquisition duration divided by the number of 
recorded maps will provide the update interval that indicates the sensor’s capability to respond 
to a change of stimulus.   
Required equipment: PC to record and extract the update rate.  

 
I. Tracking capability and capacity: Is the capability of the sensor to track one or multiple targets in 

the scene, depends on the processing algorithms used and on the accuracy of the estimated target 
location and speed. Capacity refers to the maximum number that the sensor is able to track at the 
same time. 
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Test bed definition: In order to test the target tracking capabilities of a sensor, a similar setup as 
the one used for the speed resolution test can be used. The true target’s positions and speeds 
should be used as ground truth when compared with those measured by the radar. Error in 
position and speed estimation should be quantified and characterised. The tracking capacity 
should be tested by increasing the number of targets in the scene starting from the nominal 
number maximum targets that the sensor is claimed to be able to track. If the sensor is able to 
successfully track the nominal value then the number of targets should be increased by 1 target 
each time, until the sensor fails to track all targets. If the sensor does not track the nominal 
number of targets then the number of targets should be decreased by 1 each time, until the sensor 
tracks correctly all the targets. This test will define the tracking capacity. 
Required equipment: Multiple Radar Echo Generation system, based on the number of targets to 
be tracked. If the number of targets to be tracked is high and multiple targets cannot be simulated 
by the Radar Echo Generator, then a hard setup using corner reflectors can be used.  In order to 
make the test easier and more cost-effective corner reflector targets can be stationary while the 
sensor can be placed on a moving platform to simulate moving targets. 

 
J. Sidelobe levels: Is the ratio between the peak of the main lobe and the level of the first sidelobes 

of the radar waveform ambiguity function, these are evaluated along both the delay (range) and 
Doppler (velocity) domains. 
Test bed definition: In order to measure the sidelobe levels the measurement of a target should 
be made. The output of the sensor in the range-Doppler domain should be analysed and the side-
lobe levels estimated from the range-Doppler map in both range and Doppler direction. The 
sidelobe levels will be measured as the ratio between the amplitude of the peak of the main lobe 
of the response at the position of the target and the value of the amplitude of the peak of the 
highest sidelobe (these are generally expressed in dBs). These values will provide the actual 
sidelobe levels of the radar sensor. 
Required equipment: Radar Echo Generation system. 

 
K. Integrated Sidelobe Ratio: Is the ratio between the power of the main lobe and the sum of the 

power of all the sidelobes of the radar waveform ambiguity function, these are evaluated along 
both the delay (range) and Doppler (velocity) domains. 
Test bed definition: In order to measure the sidelobe levels the measurement of a single target 
should be used. The output of the sensor in the range-Doppler domain should be analysed and 
the side-lobe levels estimated from the range-Doppler map in both range and Doppler direction. 
The sidelobe levels will be measured as the ratio between the amplitude of the peak of the main 
lobe of the response at the position of the target and the value of the amplitude of the peak of 
the highest sidelobe (these are generally expressed in dBs).  These values will provide the actual 
sidelobe levels of the radar sensor. 
Required equipment: Radar Echo Generation system. 

 
L. False alarm probability: Is the probability of the sensor detecting a target when it is not present. 

This should be designed in order to minimise false alarms while preserving good detection 
performance. 
Test bed definition: In order to test the false alarm probability a setup with an empty scene (no 
targets) should be used. Existing stationary objects in the scene can be removed from the 
detection maps using background estimation and subtraction. The nominal false alarm probability 
of the sensor (NPFA) should be used as reference and 100/NPFA measurements (decisions) should 
be taken. The actual false alarm probability should be then estimated as the number of false 
detections divided by the total number of measurements/decisions. This value will provide the 
actual sensor false alarm probability. 
Required equipment: PC to record and analyse detection maps to extract false alarm probability. 
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M. Detection probability: Is the probability of the sensor detecting a target when it is present. High 
probability of detection can also lead to high false alarm probability and usually the detector’s 
design involves a trade-off between those two characteristics. 
Test bed definition: In order to test the probability of detection, the setup described in False alarm 
probability can be used with the addition of one target in the scene. In the case of existing 
stationary targets, background extraction can be used from measurements without the target of 
in the case of stationary clutter filtering, the target should have a Doppler shift. The nominal 
probability of detection (NPD) should be used as reference and 100/NPD measurements should 
be taken. 
Required equipment: Radar Echo Generation system. 

 
N. Dynamic Range: Is the ratio between the maximum and the minimum value of the received signal 

power that the sensor can handle. A poor dynamic range means that the sensor would easily 
saturate in presence of close/large targets leading to blinding (lack of ability to detect weaker 
targets’ returns). 
Test bed definition: In order to test and calibrate the Dynamic Range of the receiver two targets, 
one with the maximum RCS (𝜎𝑚𝑎𝑥) and one the minimum RCS (𝜎𝑚𝑖𝑛) that the sensor must be able 
to detect, should be used. The target with the maximum RCS should be placed at the minimum 
detectable range (𝑅𝑚𝑖𝑛), while the target with the minimum RCS should be placed at the 
maximum detectable range (𝑅𝑚𝑎𝑥). The dynamic range (𝐷) will be then equal to: 

 
If the smaller target cannot be detected then it should be placed closer (0.5 times the range 
resolution cell every time) until it is detected and the target’s distance will represent the value of 
𝑅𝑚𝑖𝑛  to be used to compute the dynamic range. 
Required equipment: Radar Echo Generation system. 

 
O. Noise floor: Is the measure of the signal created from the sum of all the noise sources and 

unwanted signals measured by the sensor. Its value affects the performance of the sensor in terms 
of detection/tracking/recognition capabilities and it should be kept as low as possible. 
Test bed definition: In order to measure the noise floor, the sensor should be tested in open 
space, illuminating an area without targets (i.e. pointing towards the sky). The received signal 
power in this case will represent the noise floor. 
Required equipment: PC to record the radar data and analyse noise power levels. 

 
P. Linear range and linearity: Is the range in which the output of the sensor transmitter and receiver 

amplifier applies a linear function to the input. Non-linearities if present would need to be taken 
into account and compensated at the processing stages. The linearity of the sensor is an 
expression of the extent to which the actual measured curve of a sensor departs from the ideal 
curve. 
Test bed definition: In order to test the linear range (on the receiver amplifier only) the test should 
be performed using a target of known RCS. Measurements should be made at different ranges, 
starting from the maximum detectable range and moving 2 meters every time towards the 
minimum detectable range. The ratio of the measured received power and the expected power 
at the receiver (referring to the radar equation [2]) should be then considered for each 
measurement. The linear portion of the derived curve from the measurements will define the 
dynamic range. In order to test the linearity, the results of the linear range can be used in order 
to measure the extent that the curve deviates from the linear behavior. 
Required equipment: Radar Echo Generation system. 

 
Q. Antenna patterns:  Are the radiation patterns of the transmitter and receiver antenna of the 

sensor, their 3D shape is important to identify sidelobes and back lobe insulation. 
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Test bed definition: In order to test the antenna pattern, standard antenna measurements 
procedure should be used [3].  For a complete characterisation of the radiation field of the 
antenna, its relative amplitude, relative phase, polarisation, and the power gain shall be measured 
along different azimuth and elevation points with the antenna being on the centre of the scene 
and the range of the measurement equipment being constant. Figure 4.4 illustrates the standard 
spherical coordinate system used in antenna measurements. Additionally, if the transmitted wave 
covers a large or different frequency bands, the radio frequency shall also be treated as a variable 
in the measurements. A direct method of measuring the radiation pattern of a test antenna is to 
employ a suitable source antenna, which can be positioned in such a manner that it moves relative 
to the test antenna along lines of constant elevation θ and constant azimuth φ. Two main 
configuration can be used for such measurements: fixed-line-of-sight configuration where the test 
antenna and its associated coordinate system are rotated about a suitable axis, and movable-line-
of-sight configuration where the source antenna is moved incrementally or continuously along 
the circumference of a circle cantered approximately at the phase centre of the antenna under 
test. If it is moved incrementally, then for each position of the source antenna the test antenna is 
rotated and the received signal is recorded. Alternately the test antenna can be rotated 
incrementally, and for each of its positions the source antenna is moved continuously along its 
circumferential path. An example of two fixed-line-of-sight measurements is illustrated in Figure 
4.5.  All test should be performed in an anechoic environment. These measurements can be 
automated by employing antenna test chambers solutions. 
Required equipment: Antenna test chamber (example in Radar reference [4]) 

 

 
Figure 3.4 Standard Spherical Coordinate System Used in Antenna Measurements (ANSI/IEEE [3]) 

 

 
Figure 4.4 Example of two fixed-line-of-sight measurements with the test antenna rotating in 
azimuth 
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Radar Standards 
It is assumed that the DUT is compliant with the ISO 26262 standard. Furthermore, standards defining 
the test scenarios for the sensors once these are fitted on the vehicle are defined by ISO 19237 and 
ISO 19206. However, these only refer to dry weather conditions, so further scenarios should be 
defined for different weather conditions. Regarding the antenna radiation pattern, IEEE Std 149-1979 
comprises test procedures for the measurement of antenna properties. 

 
 
5. Combined RADAR-Camera-Lidar Calibration 
 
While the above described radar calibration methods provide sufficiently good results for the targeted 
applications, they lack the possibility to fully assess the placement of the radar with respect to other 
sensors. Research on 3D LiDAR-radar calibration was conducted in [40] where they proposed a 
method which estimates a 6 degrees of freedom (DOF) extrinsic calibration of a 3D LiDAR-radar pair. 
The method includes a target design suitable both for the LiDAR and the radar shown in Fig. 5.1(a). It 
is inspired by a target constructed by Stanislas and Peynot [41] where radar performance is evaluated 
using a 2D LiDAR as a ground truth with a target composed of radar tube reflector and a square 
cardboard. The target for 3D LiDAR–radar calibration consists of a Styrofoam triangle which is invisible 
to the radar while it has good properties for detection and localization in the LiDAR point cloud. Radar 
receives the echo from the trihedral corner reflector shown in Fig. 5.1(b) which has high RCS and low 
orientation sensitivity. In the end, extrinsic calibration parameters are found by two-step 
optimisation. The first step is based on the reprojection error minimisation while the second uses 
space distribution of RCS, measure of the detection intensity, to estimate variables which are not 
observable from the reprojection error due to the lack of radar’s vertical resolution. 

 

 
(a) 

 
(b) 

 
Figure 5.1 (a) Constructed calibration target from [23]; (b) Illustration 
of the working principle of the triangular trihedral corner reflector 

 
Certain radar calibration targets such as the Precision Expandable Radar Calibration Sphere (PERCS) 
[44] which uses a geodesic polyhedron shape can be modified to accommodate unified calibration of 
cameras as well as LiDAR systems. The PERCS was designed as an orbit deployable HF radar target 
with an isotropic radar cross section for all ground-based HF radars. The PERCS target made use of 
Hoberman sphere technology for deployment of large objects in space. In this example, the starting 
point of calibration target design is an icosahedron shape consists of 20 equal-sized equilateral 
triangles and 12 nodes, all of which lie on the surface of a sphere. This mesh can be improved by 
breaking each of the original triangles into smaller triangles and projecting them onto the spherical 
surface. The number of the subdivisions of each of the original triangles defines the “level” of the 
mesh. For the second-level mesh each of the original triangles is subdivided into four triangles. The 
additional nodes in the second-level mesh are located above the midpoint of the original triangles. 
For the nth-level mesh each of the original triangles of the icosahedron is replaced with 𝑛2 smaller 
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triangles. With each additional level of refinements the coarseness of the original icosahedron shape 
can be gradually improved to approximate a spherical shape more closely and the variation of the 
radar cross section with viewing direction is reduced which is useful for calibrating multiple radars at 
different directions simultaneously or calibrate a ground based radar when the calibration target is 
rotating in its axis which is the case when it’s deployed in an orbit. The triangulation of levels 1 to 8 
are shown in Figure 5.2. The advantage of these shapes with respect to spherical target is the 
additional flexibility it provides to add small, optical corner-cube reflectors to each vertex of the 
Hoberman sphere for LiDAR calibration and the ease at which the different faces can be painted with 
checkerboard like patterns for camera calibration. Optical corner reflectors provide a reflection cross 
section for visible light that depends on the incident angle and works similarly in principle of the 
microwave counterpart trihedral corner reflector as shown in Fig. 5.3(a). With one corner cube on 
each vertex as shown in Fig. 5.3(b), those that are facing toward a ground LiDAR system will reflect 
visible light back to the source as shown in Fig. 5.3(c). This geodesic polyhedron calibration target is 
more suitable for calibration of HF and VHF space weather radars and HF heaters. They can also be 
applied for laser tracking and imaging of satellites. Designing the target for calibration of automotive 
radar at 77 GHz is challenging due to the smaller wavelength which results in the requirement of 
smaller edge length of the faces as the edge length is a function of frequency of operation but is not 
impossible with higher order icosahedron geometries and improvements in manufacturing 
technologies.  

 

 
   

    
Figure5.2 First 8 levels of the equilateral triangular mesh of a sphere 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5.3 (a) Principle of optical corner cube retroreflectors; (b) corner cube reflectors at 
each vertex; (c) Laser illumination on the calibration target  

 
6. Measurement Confidence in Sensor Systems 
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While 3D imaging systems offer the potential of great positives, such as massively increased 
measurement speeds, equipment portability and relative ease when measuring freeform surfaces, 
their limitations are still being understood and international standards that describe suitable tests and 
procedures for their acceptance and use are yet to be developed, for example, VDI/VDE 2634 [24], 
the German guideline for optical 3D measuring systems addresses neither freeform surfaces nor 
surface finish. To support industry’s increased use of and improve measurement confidence in these 
technologies, NPL launched a 3D optical scanner characterisation facility [25]. It comprises a purpose-
built environmentally controlled laboratory (approximate dimensions: 3 m × 5 m × 2.5 m), test 
artefacts, test procedures and equipment to examine the performance of 3D optical scanners. The 
facility’s capabilities included: 

(a) Studying temperature effects of imaging systems and object to be imaged by measuring the 
separation between two spheres attached to a Zerodur bar as shown in Fig. 6.1(a) at different 
temperature. 

(b) Developed multi-faceted test artefacts as shown in Fig. 6.1(b) to quantify 3D optical scanners’ 
ability to measure surfaces with different reflectances, roughness and colours. In addition, 
surfaces of specific interest to industries that include aerospace, automotive, manufacturing, 
medical and heritage are addressed. 

(c) To quantify the effects on data quality and data quantity of 3D imaging systems in 
environments with different and changing illumination using artefacts such as the NPL 150 
mm Freeform artefact as shown in Fig. 6.1(c)[27]. 

(d) The resolution of the 3D imaging system is assessed by comparing scanner measurements of 
the NPL Bessel plate (Fig. 6.1(d)) with its CAD model. 

(e) Developed a tetrahedral artefact to test for imaging system sensitivities to artefact position 
within the measurement volume. 

(f) To find the optimum balance between scan velocity and measurement quality, NPL’s National 
FreeForm Centre have developed a system where the articulating arm’s scanning head is 
placed within an adjustable frame and moved along by a precision carriage. This is very useful 
for automotive industry to characterise the performance of their imaging systems. 
 

 
 

 
 
 
 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 6.1 (a) Zerodur bar artefact for temperature effects measurement; (b) The NPL 3D 
material coupon plate; (c) A fringe pattern projected onto the NPL 150 mm Freeform artefact; (d) 
The NPL Bessel plate artefact  
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Appendix E: Quantification of the Sensor key performance indicators 

A method is suggested for testing the each of the key capabilities of perception systems, 
differentiation for individual sensors types is provided where appropriate.  If no text accompanies a 
sensor type, no differentiation in method is identified. 

Sensor Capabilities: 
 

I. Angular/Spatial Resolution 
Radar 

In order to test and calibrate the range resolution, two corner reflectors closely spaced in 
range from the sensor should be positioned in front of the sensor. The range spacing of the 
two reflectors should be smaller than the nominal range resolution, in this case the test should 
demonstrate (by inspection of the range profile) that the radar is not able to discriminate the 
two reflectors in range. The test should be then performed with the corner reflectors spaced 
in range of the nominal range resolution. In this case the test should demonstrate the 
capability to discriminate the two targets in range (by inspection of the range profile). In the 
case that it would not be possible to discriminate the targets in range, then additional tests 
should be made increasing the spacing in range between the targets every time by 0.5 times 
the nominal range resolution until it becomes possible to discriminate the two targets, the 
minimum distance between the two targets when these can be discriminate will define the 
actual range resolution of the sensor. 

Camera 

The ability of a camera to spatial resolve an object is defined by the resolution limit of the 
optics, the detector and the electronics in combination. The diffraction limit or theoretical 
maximum resolution may be calculated directly from knowledge of the individual system 
components i.e. lens and detector. However real systems are non-ideal, and functional 
resolution should be determined by imaging appropriately illuminated ISO test charts: 
Geometric ISO 17850:2015, Resolution and Spatial Frequency ISO 12233:2017, and calculating 
the Modulation Transfer Function. Most resolution metrics are designed for grey-scale 
systems and colour have not been well integrated. Moreover, resolution does not account for 
other factors such as responsivity and atmospheric transmittance, which need to be 
considered in when trying to determine the accurate detection of targets. 

Lidar 

To test and calibrate the angular resolution, an appropriate 3-dimensional range chart may 
be used, with spatial frequency of the reflecting bars spanning the nominal spatial resolution, 
and the depth of valleys between bars being somewhat greater than the nominal range 
resolution. Inspection of the range/angle map should show the resolution below which the 
lidar is unable to discriminate between the bars. 

Ultrasound 

Ultrasonic sensors are unidirectional and do not provide detection capability off-axis. There 
are therefore no tests for angular/spatial resolution for individual sensors. ISO 17386 [1] 
describes tests for multi-sensor implementations for covering key zones at different azimuths 
around the vehicle. (See Range Resolution)  

 

I. Range Resolution 
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Radar 

In order to test and calibrate the angular resolution, two corner reflectors closely spaced in 
angle from the sensor should be positioned in front of the sensor. The angular spacing of the 
two reflectors should be smaller than the nominal angular resolution of the sensor. In this 
case the test should demonstrate (by inspection of the range/angle map) that the radar is not 
able to discriminate the two reflectors in angle. The test should be then performed with the 
corner reflectors spaced in angle of the nominal angular resolution of the sensor. In this case 
the test should demonstrate the capability to discriminate the two targets in angle. If the 
sensor is not able to discriminate the targets in angle in this case, then the test should be re-
iterated increasing the spacing of 0.5 times the nominal angle resolution until it becomes 
possible to discriminate the two targets. The minimum angular separation between the two 
targets when these can be discriminated will define the actual angular resolution of the 
sensor.  

Camera 

In order to test and calibrate the range resolution of stereo or multi-stereo cameras the 
procedure described in the radar chapter can be used, substituting using two closely spaced 
18% Grey spherical targets for retro reflectors. 

Lidar 

To test and calibrate the range resolution, closely spaced range target reflectors should be 
positioned in front of the sensor. The range spacing of the two reflectors should be smaller 
than the nominal range resolution, in this case the test should demonstrate (by inspection of 
the range profile) that the lidar is unable to discriminate the two reflectors in range. The test 
should be then performed with the target reflectors spaced in range of the nominal range 
resolution. In this case the test should demonstrate the capability to discriminate the two 
targets in range (by inspection of the range profile). In the case that it would not be possible 
to discriminate the targets in range, then additional tests should be made increasing the 
spacing in range between the targets every time by 0.5 times the nominal range resolution 
until it becomes possible to discriminate the two targets, the minimum distance between the 
two targets when these can be discriminate will define the actual range resolution of the 
sensor. The tests may be combined by constructing an apparatus with targets separated by 
increasing range gaps spanning the nominal range resolution. 

Ultrasound 

While ultrasound sensors are generally not able to discriminate different sources 
simultaneously, ISO 17386 describes test methods for the effectiveness of target detection 
across predefined zones to be monitored, at the rear, front and corners of the vehicle. It also 
defines test grids in both horizontal and vertical planes. 

   
Figure 1 ISO 17386 Monitoring zones and example grid pattern identifying test locations at 
the front of the vehicle 
 
The test involves the use of cylindrical test objects (diameter 75 mm, length 100 cm or the 
width of the vehicle under test, as appropriate), which are mounted either perpendicular 
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(100 cm lengths) or parallel (100 cm lengths for corners zones and vehicle width for front and 
back zones) to the level floor surface, at the each grid location in succession. The purpose of 
the multiple test positions is to map the areas where detection does and does not occur. 
Criteria are specified for the percentage coverage in each of the given zones. 

 
II. Speed Resolution 

Radar 

In order to test and calibrate the speed resolution of the sensor two potential approaches can 
be used depending on the capability to know the sensor emitted waveform characteristics 
and received signal: 

a. Knowledge of the emitted waveform characteristics and access to raw data: In the 
case in which full knowledge of emitted pulse train a start-stop approach can be used 
to perform the testing. Two corner reflectors should be placed at different ranges and 
range profiles should be generated, while changing the position of the reflectors in 
range mimicking a radial motion of the targets with difference of displacements 
proportional to the nominal speed resolution of the sensor. The total number of range 
profiles acquired should be compliant with the sensor characteristics and be equal to 
the number of frames used by the sensor to compose a CPI. The nominal sensor CPI 
should then be used as reference to create a range-Doppler map. In the range-
Doppler map the two targets should be then visible at different velocities and equal 
to the ground truth velocity emulated. If it is not possible to see the targets at 
different speeds the procedure should be re-iterated increasing the relative speed 
separation between the two targets of 0.5 times the nominal sensor speed resolution 
until it is possible to discriminate the targets in speed. The minimum speed separation 
between the targets when they can be discriminate will define the actual sensor 
speed resolution. 

b. Lack of knowledge of the emitted waveform characteristics and access to raw data: In 
this case the two corner reflectors should be mounted on moving platforms with 
accurate speed control in order to observe the sensor’s output in terms of estimated 
target velocities. The speed difference between the two platforms should be equal to 
the nominal speed resolution of the sensor. The estimated two speeds of the targets 
should be different and equal to the ground truth speed. If it is not possible to obtain 
different speeds the procedure should be re-iterated increasing the relative speed 
separation between the two targets of 0.5 times the nominal sensor speed resolution 
until it is possible to discriminate the targets in speed. The speed separation between 
the targets when they can be discriminate will define the actual sensor speed 
resolution.  

Cameras 

In order to test and calibrate the range speed of stereo or multi-stereo cameras the 
procedure described in the radar chapter can be used, substituting 18% Grey spherical 
targets for retro reflectors. 

III. Maximum Detectable Range 
Radar 

In order to test the maximum detectable range a target of known reflectivity (RCS) should be 
used to perform the testing. The target should be positioned at a range 1 m closer than the 
nominal maximum detectable range of the sensor. If the target can be detected then the 
target should be moved further away than 1 m until it is no longer detected. Similarly, if the 
target cannot be detected at the first measurement then it should be moved 1 m closer until 
it gets detected. The furthest range at which the target can be detected defines the sensor’s 
maximum detectable range. The same procedure can be performed with multiple targets of 
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different RCSs in order to provide a full characterization depending on the target’s size and 
material. 

Camera 

In order to test the maximum detectable range an extended black target  should be positioned 
against a bright horizon, at a range 1 m closer than the nominal maximum detectable range 
of the sensor, i.e. where the contrast C\ =\ 0.05. If the target can be the detected, then the 
target should be moved further away than 1 m until it is no longer detected. Similarly, if the 
target cannot be detected at the first measurement then it should be moved 1 m closer until 
it gets detected. The furthest range at which the target can be detected defines the sensor’s 
maximum detectable range. 

Lidar 

To determine the maximum detectable range for a target object of given size (cross sectional 
area) and reflectivity, the target should be positioned at a distance equal to the nominal 
maximum detectable range of the sensor. If the target can be detected at that range, then the 
target should be moved further away in 1 m increments until it is no longer detected. Similarly, 
if the target cannot be detected at the first measurement then it should be moved closer in 1 
m increments until it is detected. The same procedure should be performed with multiple 
targets of different reflectivity and size to fully the dependency of maximum detectable range 
on size and reflectivity of an object. 

Ultrasound 

While there is no predefined test, the methodology of ISO 17386 can readily be adapted to 
evaluate the maximum detectable range. This has the advantage of utilising standardised test 
objects and offers compatibility with the method of assessing effectiveness of detections. 

 
IV. Minimum Detectable Range 

Radar 

The minimum detectable range can be tested using a corner reflector of know RCS (i.e.1 
square meter) placed in proximity of the sensor (1m further away than the nominal minimum 
detectable range) and moved towards the sensor until it is no longer detected (0.1 m for each 
measurement). The closest range at which the target can be detected successfully will define 
the actual minimum detectable range of the sensor. 

Camera 

The minimum detectable range can be tested by moving an extended black target closer to 
the camera. The closest range at which the target can be detected successfully will define the 
actual minimum detectable range of the sensor. For a mono-camera this can be 0 m but for a 
stereo-setup the required overlap in fields for view will generate a real positive limit. 

Lidar 

The minimum detectable range can be tested using a target of known reflectivity and size 
placed close to the sensor (at nominal minimum detectable range) and moved towards the 
sensor in 10 cm increments until it is no longer detected, or away from the sensor until it is 
detected. 

Ultrasound 

While there is no predefined test, the methodology of ISO 17386 can readily be adapted to 
evaluate the minimum detectable range. This has the advantage of utilising standardised test 
objects and offers compatibility with the method of assessing effectiveness of detections 

 
V. Maximum Unambiguous Speed 
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Radar 

In order to test the maximum unambiguous speed, the test should be performed in a 
similar environment as described for the Speed Resolution. In this case a single moving 
target should be used. The target speed should be firstly set as the nominal maximum 
unambiguous speed of the sensor, if it cannot be measured properly then a speed of 
0.5 m/s slower should be used until the speed is measured correctly. Similarly, if the 
nominal maximum unambiguous speed can be measured then the test should be re-
iterated with a speed of 0.5 m/s faster until the speed is correctly measured. The 
maximum speed that can be measured unambiguously will define the actual 
maximum unambiguous speed. 

Camera 

In order to test the maximum unambiguous speed for of stereo or multi-stereo cameras the 
procedure described in the radar chapter can be used, substituting a 18% Grey spherical 
target for a retro reflector. 

VI. Minimum Detectable Speed 
Radar 

The minimum detectable speed will be defined by the speed resolution of the sensor. The test 
for speed resolution will provide also this value. 

VII. Update rate/Responsiveness 
Radar 

In order to test the sensor’s Update rate and Responsiveness, the rate of the outputs of the 
estimated target’s parameters should be measured in a controlled environment. If the sensor 
is able to provide an output through an interface (i.e. a display) then its refresh rate will 
provide the measurement of the update rate of the sensor. 

Camera 

 In camera systems frame rate is the limiting case. 

Ultrasound 

The same approach to that used for Radar is appropriate. The limiting factor is the pulse 
repetition rate. 

 
VIII. Tracking Capability 

Radar 

The tracking capacity should be tested in the same setup as the tracking capability test, 
increasing the number of targets in the scene starting from the nominal number maximum 
targets that the sensor is claimed to be able to track. If the sensor is able to track successfully 
the nominal value then the number of targets should be increased by 1 target each time, until 
the sensor fails to track all targets. If the sensor does not track the nominal number of targets 
then the number of targets should be decreased by 1 each time, until the sensor tracks 
correctly all the targets. This test will define the tracking capacity. In order to make the test 
easier and more cost-effective the targets can be stationaries while the sensor can be placed 
on a moving platform (in this case all targets will exhibit similar speeds due to their stationary 
nature). 

Camera 

In order to test and calibrate target tracking capabilities of stereo or multi-stereo cameras the 
procedure described in the radar chapter can be used, substituting a 18% Grey spherical target 
for a retro reflector. 
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Lidar 

Testing of tracking capabilities will require a method to establish ground truth as to a target’s 
position and speed as the target passes through the field of view of the lidar. The ground truth 
can be compared against the positioning output from lidar tracking to establish tracking 
precision. 

Ultrasound 

Ultrasound sensors are primarily used to identify the distance from stationary targets or the 
momentary presence of a moving target (e.g. another vehicle). However, ultrasound systems 
are not designed to track targets.  

 
IX. Tracking Capacity 

Radar 

The tracking capacity should be tested in the same setup as the tracking capability test, 
increasing the number of targets in the scene starting from the nominal number maximum 
targets that the sensor is claimed to be able to track. If the sensor is able to track successfully 
the nominal value then the number of targets should be increased by 1 target each time, until 
the sensor fails to track all targets. If the sensor does not track the nominal number of targets 
then the number of targets should be decreased by 1 each time, until the sensor tracks 
correctly all the targets. This test will define the tracking capacity. In order to make the test 
easier and more cost-effective the targets can be stationaries while the sensor can be placed 
on a moving platform (in this case all targets will exhibit similar speeds due to their stationary 
nature). 

Camera 

The tracking capacity of stereo or multi-stereo cameras can be tested using the procedures 
described in the radar chapter, substituting 18% Grey spherical targets for retro reflectors. 

Lidar 

The tracking capacity should be tested in the same setup as the tracking capability test, 
increasing the number of targets in the scene starting from the nominal number maximum 
targets that the sensor is claimed to be able to track. If the sensor is able to track successfully 
the nominal value then the number of targets should be increased by 1 target each time, until 
the sensor fails to track all targets. If the sensor does not track the nominal number of targets 
then the number of targets should be decreased by 1 each time, until the sensor tracks 
correctly all the targets. This test will define the tracking capacity. 

 
X. Contrast 

Camera 

In order to test the contrast threshold for detection, an extended black target should be 
placed on the ground against a bright horizon such that the contrast 𝐶 = 0.05 = 𝐶𝑇ℎ  the 
threshold contrast where nominally the probability of detection 𝑃𝐷 = 50%. If 𝑃𝐷 > 50% the 
target should be moved away from the camera, the brightness of the horizon or target size 
reduced until the probability is 50% or if detection probability < 50% the target should be 
moved towards the target or the brightness of the horizon or the target size increased and 
the actual contrast threshold recalculated. 

XI. Sidelobe Levels 
Radar 

In order to measure the sidelobe levels the measurement of a single corner reflector should 
be made. The output of the sensor in the range-Doppler domain should be analysed and the 
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side-lobe levels estimated from the range-Doppler map in both range and Doppler direction. 
The sidelobe levels will be measured as the ratio between the amplitude of the peak of the 
main lobe of the response at the position of the target and the value of the amplitude of the 
peak of the highest sidelobe (these are generally expressed in dBs).  These values will provide 
the actual sidelobe levels of the radar sensor. 

XII. Integrated Sidelobe Ratio 
Radar 

The integrated sidelobe level can be tested using the same setup used to measure the sidelobe 
level, by computing the ratio the main lobe over that of all the power outside the main lobe 
in either the range or the Doppler direction. 

XIII. False Alarm Probability 
In order to test the false alarm probability measurements in a number of varying empty 
scenes (no targets) should be used. Existing stationary objects in the scene can be removed 
from the detection maps using background estimation and subtraction. The nominal false 
alarm probability of the sensor (NPFA) should be used as reference and 100/NPFA 
measurements (decisions) should be taken. The actual false alarm probability should be then 
estimated as the number of false detections divided by the total number of 
measurements/decisions. This value will provide the actual sensor false alarm probability. 

XIV. Detection Probability 
In order to test the probability of detection of a specified class of objects,  the setup described 
in False alarm probability can be used with the addition of one target in the scene. The 
location and orientation of targets should vary between test scenes. In the case of existing 
stationary targets, background extraction can be used from measurements without the 
target of in the case of stationary clutter filtering, the target can be placed on a moving 
platform. The nominal probability of detection (NPD) should be used as reference and 
100/NPD measurements should be taken. Separate determinations of the detection 
probability may be made for different classes of target, or environmental conditions etc.  

XV. Dynamic Range 
Radar 

In order to test and calibrate the Dynamic Range of the receiver two reflectors with the 
maximum RCS (𝜎𝑚𝑎𝑥) and the minimum RCS (𝜎𝑚𝑖𝑛) that the sensor must be able to detect 
should be used. The target with the maximum RCS should be placed at the minimum 
detectable range (𝑅𝑚𝑖𝑛), while the target with the minimum RCS should be placed at the 
maximum detectable range (𝑅𝑚𝑎𝑥). The dynamic range (𝐷) will be then equal to: 

 

If the smaller target cannot be detected then it should be placed closer (0.5 times the range 
resolution cell every time) until it is detected and the target’s distance will represent the 
value of 𝑅𝑚𝑖𝑛  to be used to compute the dynamic range. 

Camera 

In order to test and calibrate the Dynamic Range, one must be obtain the Saturation 
Equivalent Exposure 𝑆𝐸𝐸, and the Noise Equivalent Exposure 𝑁𝐸𝐸. SEE is the exposure that 
is just equal to the saturation level of the detector. NEE is the exposure that is just equal to 
the saturation level of the detector. 

Dynamic Range is defined as

𝐷𝑅 =
𝑆𝐸𝐸

𝑁𝐸𝐸
=

𝑉𝑀𝑎𝑥

𝑉𝑁𝑜𝑖𝑠𝑒
 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

𝑆𝐸𝐸 =
𝑉𝑀𝑎𝑥

𝑅𝐴𝑣𝑒
        (

𝐽

𝑐𝑚2) 

𝑁𝐸𝐸 =
𝑉𝑁𝑜𝑖𝑠𝑒

𝑅𝐴𝑣𝑒
       (

𝐽

𝑐𝑚2)  

Where 𝑉𝑀𝑎𝑥 is the maximum detector signal, 𝑅𝐴𝑣𝑒  is the average responsivity, and 𝑉𝑁𝑜𝑖𝑠𝑒  is 
the noise signal.  

Care should be taken while testing and calibrating Dynamic Range as the device quantum 
efficiency is a function of wavelength, and light-source characteristics can vary considerably; 
consider the variation between the blackbody emission spectra of the Sun vs the spectra of 
Halogen lamps or Phosphor converted LEDs. Guidance is provided in ISO 15739:2017, ISO 
7589:2002 and ISO/CIE 11664:2007. 

Lidar 

Experiments to determine the maximum and minimum detectable range, using a maximally 
reflective object and the minimum detectable range, and a minimally reflective object at its 
maximum detectable range allows calculation of the dynamic range of the sensor. 

Ultrasound 

Although not generally applicable to the use-case for ultrasound sensors, the dynamic range 
can be assessed in a laboratory environment, using the methods for linearity range and noise 
floor described below. The dynamic range is simply the ratio (or difference if specified in 
decibels) between these two parameters.  

Assessment of the dynamic range is not feasible (or necessary) for Ultrasound sensors fitted 
to vehicles. 

 
 

XVI. Noise Floor 
Radar 

In order to measure the noise floor, the sensor should be tested in open space, illuminating 
an area without targets (i.e. pointing towards the sky). The received signal power in this case 
will represent the noise floor. 

Camera 

In order to measure the noise floor, a full analysis of the system noise (𝑛𝑆𝑦𝑠) sources must be 

undertaken where:  

⟨𝑛𝑆𝑦𝑠⟩ = √⟨𝑛𝑆ℎ𝑜𝑡
2 ⟩ + ⟨𝑛𝑃𝑎𝑡𝑡𝑒𝑟𝑛

2 ⟩ + ⟨𝑛𝑅𝑒𝑠𝑒𝑡
2 ⟩ + ⟨𝑛𝐴𝑚𝑝

2 ⟩ + ⟨𝑛𝐴𝐷𝐶
2 ⟩ 

including determination of the components of pattern noise: Fixed Pattern Noise/dark current 
(FPN) and Photoresponse Nonuniformity (PRNU) by dark and flat-field exposures respectively, 
where:  

⟨𝑛𝑃𝑎𝑡𝑡𝑒𝑟𝑛⟩  =  √⟨nFRN
2 ⟩ + ⟨nPRNU

2 ⟩ 

Ultrasound 

Although not generally applicable to the use-case for ultrasound sensors, the noise floor can 
be assessed in a laboratory environment. The noise floor of acoustic transducers is assessed 
by isolating the transducer from all sources of external acoustic stimuli in the frequency band 
of interest. In practice a thick-walled enclosure suitably sized to accommodate the sensor can 
be used. It is necessary to pass the sensor cable out of the enclosure taking precaution to not 
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compromise the acoustic isolation. It is then simply a matter of measuring the residual signal. 
The power spectral density is normally measured which can be readily integrated over the 
pre-requisite frequency bandwidth to obtain an equivalent sound pressure level in decibels. 
An audio analyser will normally compute all parameters automatically. 
 
Assessment of the noise floor is not feasible (or necessary) for Ultrasound sensors fitted to 
vehicles. 

 
XVII. Linear Range 

Radar 

In order to test the linear range (on the receiver amplifier only) the test should be performed 
using a corner reflector of known RCS. Measurements should be made at different ranges, 
starting from the maximum detectable range and moving 2 m every time towards the 
minimum detectable range. The ratio of the measured received power and the expected 
power at the receiver (referring to the radar equation [2] should be then considered for each 
measurement. The linear portion of the derived curve from the measurements will define the 
dynamic range. 

Camera 

In order to test the linear range, the test should for Dynamic Range should be performed while 
reducing the incident power from the Illuminant in a controlled fashion. Measurements 
should be made at powers from saturation to the noise floor. The ratio of the measured 
received power and the expected power should be then considered for each measurement. 
The linear portion of the derived curve from the measurements will define the dynamic range. 

Ultrasound 

Although not generally applicable to the use-case for ultrasound sensors, the linear range can 
be assessed in a laboratory environment. A method whereby the sensor under test is 
compared with a laboratory-grade reference ultrasound sensor (typically a hydrophone, but 
operated in air) can be used. The reference sensor should be known to operate linearly over 
the range of sound pressure levels to be tested. An ultrasound source, also known to operate 
linear is required to provide the test stimulus. The test then proceeds by measuring the sensor 
output as a function of the applied sound pressure level, as determined by the reference 
sensor. Alternatively, the sensor output can be analysed directly by a distortion meter. 
 
Assessment of the linear range is not feasible (or necessary) for Ultrasound sensors fitted to 
vehicles. 

 
XVIII. Linearity 

In order to test the linearity, the results of the linear range can be used in order to measure 
the extent that the curve deviates from the linear behaviour. 

XIX. Antenna Patterns 
Radar 

In order to test the antenna pattern, standard antenna measurements procedure should be 
used [3].  

XX. Field of View 
The angle through which the sensor can detect electromagnetic radiation may be determined 
by moving a target in azimuth and elevation with respect to the sensor and determining the 
position at which it is no longer visible. 
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Appendix F: The physical basis for rainfall testing requirements 

 
Aim of this Appendix:  The section describes the underpinning science behind CAV sensor degradation 
due to falling rain at lidar and radar wavelengths.     Its purpose is to demonstrate the complexity of 
the rainfall-sensor interaction that drives the recommendations regarding the essential components 
of the test ecosystem, along with the need to appropriately handle the inescapable uncertainties that 
arise from this complexity.  It is not intended to be a comprehensive summary of the topic. Some of 
this material also appears in the main body of the document. 

 
Orientation 
The description follows an incremental approach thus: 
1. The impact of a single spherical raindrop on the beam from an active CAV sensor, its sensitivity to 

the size of the drop and the introduction of terms such as attenuation 

2. The cumulative effect of the passage of the beam through a collection of raindrops, whose sizes 

are described in terms of a drop size distribution (DSD) that can be linked to the rainfall rate 

3. The variability of these DSDs, by rain fall type, and its consequent impact on attenuation at 

different frequencies 

4. The impact of non-spherical raindrops on the attenuation 

5. The linkage between attenuation and the maximum range KPI 

6. The variability of rainfall rate (and by implication DSD) at different scales 

7. The resultant need for extreme care when considering meteorological definitions of rainfall rate 

for CAV sensor applications 

8. Commentary on the linkage to the monitoring of the ODD 

9. Implications for the test ecosystem 

 
Single raindrop 
Rainfall attenuates electromagnetic (EM) signals at all wavelengths as the EM wave travelling between 
the target and the sensor interacts with each raindrop in its path.    The electromagnetic wave will 
either pass between the raindrops or, if it encounters one, it will be either absorbed (effectively 
heating the raindrop) or scattered.   The combined effect of absorption and scattering is called 
extinction, and the summation of all the extinction events as the EM travels between the sensor and 
the target is the attenuation.   
Both the strength of absorption and scattering caused by a single raindrop, and the directions in which 
the EM radiation is scattered, can be modelled.  It is dependent on the following factors: 

• The size parameter of the droplet, which is a measure of the size of the droplet compared to the 

wavelength of the radiation  

• The refractive index of the water in the raindrop, which itself is a function of the operating 

wavelength of the sensor (and the temperature) 

• The shape of the droplet, noting that as the droplets increase in size, they tend to squash in the 

vertical direction due to aerodynamic drag.  This results in the attenuation also being dependent 

on the polarisation of the beam.  It is common to make an initial assumption that the raindrop is 

spherical, especially in the presence of other dominant uncertainties such as the precise drop size 

distribution (see later)  

For spherical drops, the effectiveness of a given drop in removing energy from the beam can be 
determined by Mie (1908) theory18.  Fig 1, shows this for water droplets at 77 GHz (i.e. a mm-wave 
radar) and a 950 nm lidar. 

 
18 Mie, G. von, 1908: Beitrage zur Optic triiber Medien, speziell kolloidaler Metallosungen, 

Ann. der Physi1c, 25,377-445. 
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Figure 1: The variation of extinction efficiency with (a) size parameter and (b) droplet diameter.  Qe 
is a measure of the extinction coefficient divided by the cross-sectional area of the droplet.  Size 
parameter is π*D/λ i.e. the ratio of the circumference of the droplet divided by the wavelength   
 
Two things are particularly noteworthy.  Firstly, droplets have the potential to become very efficient 
at removing energy from the beam when they are comparable in size to the wavelength.  Secondly, 
the strength of this interaction is very sensitive to the droplet size.  This has significant implications to 
the assurance challenge because it means that the impact of rain on the attenuation, and therefore 
the performance of sensors, can be very sensitive to how the total rainfall is distributed across the 
different sizes of raindrop.   
 
Merely considering the extinction value is not enough.  As mentioned previously, extinction may 
comprise both absorption and scattering. It matters both how much of the lost energy is simply 
absorbed and, for the scattered part how directional that scattering is.  Fig 2 demonstrates how the 
directionality of the scattering varies with size parameter.   At small size parameters (the droplet is 
much smaller than the wavelength) the scattering in the forward and backward directions is equal and 
much of it is away from the direction of the beam.  This is referred to as Rayleigh scattering and it is 
this that is responsible for blue skies and red sunsets. It also applies to the scattering by very small 
droplets at the mm-wave (radar) band.   
 
As the droplet (and therefore size parameter) increases, the scattering is predominantly forward and 
as the size increases it is concentrated in a narrow forward peak.  This is the case of lidar light 
interacting with larger raindrops.   The behaviour of this narrow peak is significant for a number 
reasons: 

• Energy that is scattered in the strongly forward direction contributes to the calculated extinction 

in the same way as energy scattered out of the beam.  The resultant calculation of attenuation 

may therefore represent an overestimate of the true energy lost, however the wave will be slightly 

time delayed as a result of passing through the droplet.  This has the effect of spreading the pulse 

of energy in time, which may affect sensor performance 

• Energy that is scattered close to the forward direction may subsequently scattered back towards 

the main beam direction by other droplets.  This also leads to spreading the pulse of energy.  This 

is well described in Guo19 et al 2015 

 
19 Guo J, H Zhang, X Zhang (2015) Propagating Characteristics of Pulsed Laser in Rain, International Journal of Antennas and 
Propagation, Volume 2015, Article ID 292905, 7 pages, 
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• The magnitude of the effect of such scattering on sensor performance will also be related to the 

relative angular widths of the beam and the forward scattering peak 

Overleaf: 

Figure 2: Phase functions (for unpolarised light) for progressively larger particles for increasing size 
parameters.  The plots themselves are for lidar however for the purposes of demonstration they 
are indicative of the behaviour at other wavelengths 
(a) Size parameter < 0.1 e.g cloud droplets at radar frequencies / air molecules at lidar i.e. Rayleigh 
scattering 
(c) Size parameter ~1 e.g. rain drops at radar / cloud droplets at lidar 
(d) Size parameter ~10 e.g. large rain droplets at lidar 
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Clearly there is much complexity involved even at the single rain drop level and the sensor assurance 
framework must be aware of the implications of this in its design i.e. it must be capable of measuring 
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the net impact of all of these processes for all sensors, which will vary considerably with the precise 
characteristics (e.g. angular resolution, pulse width) of the sensor.    
 
The next section looks at how this strong dependence on droplet size manifests itself when a sensor 
is looking through “real rain”.    
 
The sensitivity to the drop size distribution 
Note: In this section, full detail has been omitted for readability.  For example, in some of the equations, 
mathematical constants have been combined and their values not explicitly given. 
 
There are numerous studies in the meteorological literature that attempt to parameterise the number 
of raindrops with droplet size (e.g. Ulbrich20 1983).   This is referred to as the drop size distribution 
(DSD) and is usually parameterised by a mathematical function, a common form of which is the 
gamma function: 
 

 
 
Where N(D) is the number density (in m-3 cm-1) for a droplet diameter D (cm), N0 is a scaling factor 
related to the total number concentration, D0 is a median volume drop diameter, and µ is a shape 
factor that influences the relative prevalence of large and small droplets. 
   
The above form makes use of the relationship between the terminal fall velocity of a rain drop and its 
size proposed by Atlas and Ulbrich (1977)21: 
 

 
 
It is noted here that this parameterisation is one of a number in the literature and would have been 
particularly suited for linking weather radar returns to measurable rainfall rate.  Other studies such as 
van Boxel (1998)22 specifically consider the acquisition of terminal velocity as an important 
consideration for desired height of a physical rainfall simulators. 
 
The parameterisation N(D) is powerful because it enables the linking of one measurable bulk property 
of rainfall to another.  Many of these ‘measurables’ can be expressed as in the following general 
integral: 
 

 
 
where Dp is the raindrop diameter raised to the pth power and ap is a constant that ensures the correct 
unit.  For example: 

• when p=6 the integral is the radar reflectivity Z (assuming Rayleigh scattering) 

• when p=3, the integral is summation of the volumes of all the spherical raindrops and with the 

appropriate ap, this yields the liquid water content 

 
20 Ulbrich, C. W. (1983) :Natural variations in the analytical form of the raindrop size distribution," J. Climate 
Appl. Meteor., 22 (10), 1764–1775  
21 Atlas D. and Ulbrich C.W 1977: Path- and area-integrated rainfall measurement by microwave attenuation in 
the 1-3 cm band. J. Appl. Meteor., 16, 1322-1331 
22 Height of shed paper: van Boxel, J. (1998). Numerical model for the fall speed of raindrops in a rainfall 
simulator. I.C.E. Special Report, 1998/1, 77-85 
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• when the volume of each droplet is multiplied by its fall velocity, giving p=3.67, the integral will 

produce the measured rainfall rate 

• when p=0 the integral yields the total number of raindrops in a measured volume 

Thanks to the well-behaved nature of exponential functions during integration, it is possible to derive 
very simple power law relationships between e.g. the radar reflectivity and the equivalent rain rate.  
This is the basis of using long wavelength radars for rain measurement in meteorology. 
 
In order to calculate the attenuation or extinction coefficient values as an EM wave passes through 
the volume of rainfall, it is necessary to replace the simple powers of D with the Mie extinction 
efficiency Qe(D) multiplied by the cross-sectional area of the droplet, thus: 
 

 
 
As can be seen in Fig 1, Qe(D) is highly variable with D.  In this study, Qe was calculated at a range of 
discrete droplet sizes using an extension of the Met Office’s in-house Havemann-Taylor Fast Radiative 
Transfer Code (HT-FRTC)23 to create a look-up table of values, which allowed for rapid computation of 
total extinction when combined with a range of DSDs, alongside their equivalent rainfall rates.  This 
was performed for both lidar and mm-wave wavelengths, and also the C-band wavelength (5 cm) 
employed by the Met Office’s operational radar system as an additional quality check (which is not 
reported on further here) and also compared to those from the literature24. 

 
A note about units and notation 
This collaborative study brought together experts from the disciplines of Meteorology, Physics and 
Engineering, and with them their respective preferences for units and notation. In the treatment of 
attenuation both linear and logarithmic units are used in this report.  The following provides 
traceability between these. 
 
The walkthrough of Appendix C and Section 6.2 of the main report, employs a one-way attenuation 
coefficient γ in km-1.  The notation γ is interchangeable with the extinction coefficient, kext, which is 
more commonly used in the field of meteorological (passive) remote sensing and radiative transfer. 
 
When considering the cumulative effect of transmission along a path through a medium of varying 
attenuation coefficient, it is more straightforward to work in a logarithmic unit because it enables a 
more simple additive approach.  Also, as the sensors considered in this limited pilot are both active, 
therefore following an emitted and returned path, a 2-way attenuation value is useful.   Much of the 
analysis in this Appendix therefore employs both a 2-way attenuation coefficient A in dB/km and a 
total 2-way attenuation in dB. 
 
The conversion between A, kext and γ is: 
 

𝐴 =  
20

𝑙𝑛10
 𝑘𝑒𝑥𝑡  =  

20

𝑙𝑛 10
 𝛾 

 
 
 
 

 
23 Havemann S, J-C Thelan,  J.P. Taylor & C. Harlow (2018), The Havemann-Taylor Fast Radiative Transfer Code 
(HT-FRTC): A multipurpose code based on principal components,  J Quant. Spect and Radiative Transfer, 220, 
180-192. 
24 Van de Hulst (2003), Light Scattering by Small Particles, Dover Publications, pp470, ISBN 978-0486642284 
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The impact of the DSD to rainfall relationship 
Careful thought must be taken when applying DSDs from the literature to the CAV sensor domain.  As 
described earlier, the non-linear Mie response means that the total attenuation may be very sensitive 
to the detail of the DSD, especially where the droplet size is close to the wavelength.  Many of the 
DSDs in the literature were developed to give good agreement with empirically derived reflectivity-
to-rain rate relationships and are heavily influenced by larger droplets due to the D6 relationship.   
Also, it is important to be aware that there may be considerable variability over the short time and 
space scales relevant to the CAVs (more on this later).   However, there is still much to be learned from 
the implications of the documented sets of N0, D0 and µ. 
 
The µ term is the most instructive to discuss here.  Fig 3 demonstrates the how the shape of the DSD, 
in particular the relative population sizes of the raindrops impacts the measured rainfall rate and the 
extinction parameters.  

 
 
Figure 3 (overleaf): How µ affects key parameters.  (a) The droplet number density as a function of 
diameter (in log-linear form) for 3 DSDs with a different µ values.  µ=2 is more representative of 
convective rain (showers) and µ=-2 is considered to be more representative of orographic rain, 
where more of the rain volume is in the form of smaller drops. The widely used Marshall Palmer 
(1948)25 distribution corresponds to µ=0   (b) The relative contribution of the different droplet sizes 
to the measured rainfall rate. (c) The relative contribution of the different droplet sizes to the 
extinction at lidar wavelengths.  (d) As (c) but for a 77 GHz mm-wave radar.  The liquid water content 
(i.e. the total mass of water contained in 1m3 of air is the same for all of these and, as can be seen 
by plot (b), the rainfall rates are also effectively identical 

 

 
25 Marshall, J.S., and W.M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166 
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The gamma function parameters are influenced by the environmental factors relating to the rainfall 
production.   It is useful to think of 3 broad categories of rainfall: 
 
Frontal (or stratiform or dynamic) – produced by large scale weather systems (µ is mostly positive) 
Convective (showers, thunderstorms) – produced by atmospheric instability.  For more vigorous 
events, very large rain drops are possible with much fewer smaller ones (µ is usually in the range 0 to 
2) 
Orographic – produced or significantly enhanced by forced assent over hills and mountains with larger 
numbers of smaller drops (µ is negative) 
 
The Marshall Palmer (1948) distribution sets µ=0 and was optimised to ensure good agreement 
between radar reflectivities and measured rainfall rate (and therefore troubled itself very little with 
the accurate representation of smaller droplets). 
 
The following plots demonstrate the net impacts of the DSD choice when comparing the attenuation 
values for a lidar and mm-wave radar simultaneously.  Firstly, Fig 4 shows the sensitivity of the 
calculated 2-way attenuation A for lidar and radar for a range of drop sizes derived from Ulbricht. For 
visual clarity this has only been done for a small set of rainfall values so that the spread of possible 
values of attenuation simply due to DSD can be appreciated. 
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Figure 4: Scatterplot of 2-way attenuation for lidar (y-axis) and radar (x-axis).  The plot shows how 
attenuation varies for 5 different rainfall rates (1, 10, 50, 100 & 500 mm/hr), with the scatter at each 
rain rate due to the assumption of DSD.   The shapes refer to the type of rainfall, which will have a 
strong influence on the distribution of rain across smaller and larger sizes 
 
What is immediately obvious is that a single rainfall rate is capable of generating a very wide range of 
attenuation values.   
 
Fig 5 zooms in on this and highlights the spread of attenuations that are achievable with a single rain 
rate simply due solely to the redistribution of the rain mass across the range of droplet sizes. 
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Figure 5: The same plot as previously but focussing on rain rates up to 100 mm/hr.  The ellipses 
highlight the spread of points for a single rain rate due the change in drop size distribution 

 
Some commentary is necessary at this point.  
1. For the lowest three rain rates plots (1, 10 & 50 mm/hr), the size of the spread increases with 

rainfall rate but then appears to reduce at 100 mm/hr.  This is because between 50 and 100 mm/hr 

we have removed the orographic and frontal (stratiform) rain from the list of DSDs that can be 

plotted, as they are unlikely to produce such high rain rates.  There is therefore less variability 

available from the differing DSDs considered here. 

2. The higher rainfall rates result in more larger droplets, which for the lidar wavelengths will result 

in a significant proportion of strong forward scattering.  It is likely that this may give an 

overestimate of the effective attenuation for the lidar compared to the radar because the 

scattered energy is still available within the beam.  However, this will dependent on the detail of 

individual sensor (such as its sensitivity to pulse spreading and its angular resolution).  

Nevertheless, the headline attenuation figures are a useful guide as to the relative magnitude of 

impact on sensors as a function of the DSD and the rainfall rate. 



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

3. The plots give an insight into how uncertainties in the characterisation of the sensors in the test 

environment may be correlated between sensor types.  Simplistically, if a central value from the 

ellipse in Fig 5 is used then the ellipse will be indicative of the correlated error spread if that value 

is assumed to be true. Careful inspection of the 100 mm/hr case reveals that the Marshall Palmer 

DSD is roughly central to the spread and is therefore used as the basis for the walkthrough of the 

golden thread. 

The following concluding statements are made as a result of the above analysis and are included in 
the main body of the report. 

1. The drop size distribution (DSD) experienced by the sensors under test is such a strong driver of 

sensor performance that it must be measured accurately – it is not sufficient to merely 

characterise the rainfall in terms of its rate in mm/hr.  As the DSD shape is strongly influenced 

by the type of rainfall, this study recommended that BSI PAS 1883 includes rainfall type in the 

ODD taxonomy. 

 
2. It is necessary to expose sensors to a variety of DSDs in order to assess their performance fully. 

This implies a need to access a wide range of rainfall conditions, either naturally in the external 

environment and/or with a high level of control in a CETF. 

 
3. It cannot be assumed from the outset that a CETF will be capable of producing the full range of 

naturally occurring DSDs.  It is essential to have an external testbed,  the purpose of which will 

be one or both of (a) verifying the realism of the CETF DSD and corresponding sensor response 

and (b) complementing the data from a CETF by combining the information in a Bayesian sense. 

  
The impact of non-spherical raindrops on the attenuation 
The analysis to this point has made the assumption of spherical raindrops.  In the real world, raindrops 
deform as they fall due the aerodynamic forces on the droplet and the effects of surface tension, with 
the drop flattening along the axis in the direction of fall.  This distortion increases with droplet size 
until the droplets become too large and break up.  Fig 6 shows two parameterisations from the 
literature for the variation in droplet aspect ratio with radius.  Both assume the raindrop adopts the 
shape of an oblate spheroid, itself a simplification.  While they differ in their detail at very large drop 
sizes, it should be noted that beyond 6 mm diameter, the numbers of droplets are so low that their 
contribution to total attenuation is small.  Below this size the distortion is similar. 
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Figure 6: Axial ratio of raindrops versus diameter according to two parameterisations from the 
literature, Illingworth and Blackman26 and Brandes et al27.  While there is disagreement at the 
larger droplet sizes, the effect on extinction at these sizes will be relatively small due to the low 
numbers of droplets of this size 
 
The droplet flattening means that the extinction of the wave becomes dependent on the polarisation 
of the incoming beam with respect to the droplet.  Put (over)simply, as the drop is squashed in the 
vertical direction, radiation will “see” a smaller drop dimension in the vertical (V) polarisation than it 
will in the horizontal (H) and is consequently attenuated less. This can be demonstrated by using T-
matrix code28 for oblate spheroids instead of the spherical Mie calculation.  
 
Fig 7 compares the 2-way attenuation as a function of rainfall rate for both spherical and oblate 
raindrops at 77 GHz.  For the spherical case, V & H polarisations are identical.  For oblate drops the V-
polarisation undergoes less attenuation.      
 
As drop distortion is an inherent part of the process reaching terminal velocity, this further 
highlights the need to pay particular attention to the height of the CETF if we aspire to maximise 
the realism of the generated rainfall.  (The reader is reminded that this analysis only considers the 
attenuation of the beam – the apparent droplet size in the orientation of the sensor polarisation may 
also have an impact by presenting a larger backscattering cross-section.  This may reduce the signal 
to noise ratio of the return from a target object with respect to its immediate environment.) 

 
26 Illingworth A.J. and T.M. Blackman, 2002: The Need to Represent Raindrop Size Spectra as Normalized 
Gamma Distributions for the Interpretation of Polarization Radar Observations, J. Appl. Meteor.,  41 (3), 286-
297. 
27 Brandes, E.A, G. Zhang and K. Vivekananda, 2004: Drop Size Distribution Retrieval with Polarimetric Radar: 
Model and Application, J. Appl. Meteor., 43 (3), 461–475.  
28 Waterman PC., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D 
1971;3:825–39. (Reprinted in: Kerker M, editor. Selected papers on light scattering (SPIE Milestone series, vol. 
951). Bellingham, WA: SPIE Press; 1988. p.811–2) 
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Figure 7:  2-way attenuation as a function of rainfall rate, assuming a Marshall-Palmer DSD, at 77 
GHz.  The red line is that calculated for spherical droplets, which is independent of polarisation.  
The blue is value for the V-polarisation if droplet distortion according to Illingworth and Blackman 
(2002) is factored in using T-matrix  
 
The sensitivity to droplet shape is not pursued further in this report and spherical drops are assumed 
for remainder as this is a sufficiently robust assumption to explore the remaining effects.  For 
completeness it is also noted that there is also a temperature dependence of the attenuation 
coefficient at 77 GHz due the variation of the dielectric constant of water with temperature.   While 
this is relatively small compared to the variation due to DSD29 exhibited in Figs 4 & 5, it is 
recommended that its contribution to the KPI uncertainty budget is explored in further work. 
 
Recap: The impact of rainfall on CAV sensor channels is sensitive to the underlying detail of how that 
rainfall volume is distributed across possible droplet sizes.  In the natural world this will be linked to 
the mechanisms that produced the rainfall in the first place.  In a CETF this will be determined by the 
level of control over the generated DSD.  In either case the DSD must be measured in the different 
test environments.  It is unlikely that all relevant control parameters of the attenuation will be known 
when the CAV is on the road, and this must therefore be reflected in the error budget when 
determining if a CAV sensor is within its ODD. 
 
 
The variability of rainfall rate (and by implication, DSD) at different scales 
The preceding analysis demonstrates a sensitivity to the detail of the rainfall assuming a single steady-
state rainfall rate.   As the ultimate application of the sensor assurance process will be to determine 
if a CAV sensor is within its ODD in an operational sense, it is essential that this rainfall definition can 

 
29 The effect of the built and natural environment on millimetric radio waves (February 2018), Report for DCMS, 
published by Ordnance Survey, available from https://www.gov.uk/government/publications/ordnance-
survey-5g-planning-and-mmwave-environment-reports 
 

https://www.gov.uk/government/publications/ordnance-survey-5g-planning-and-mmwave-environment-reports
https://www.gov.uk/government/publications/ordnance-survey-5g-planning-and-mmwave-environment-reports
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be interpreted unambiguously so that any ‘safe thresholds’ can be compared to real world values that 
are either measured or provided from an external source. 
 
In this section the fractal nature of rainfall variability (both in time and space) is explored and its 
implications for rainfall definition are considered.    Firstly the definition of rainfall rate is discussed. 
 
Rainfall rate is usually expressed as an average intensity in the units of mm/h, corresponding to the 
depth of rain water collected over a known surface area divided by the time interval over which it is 
collected.  However, this unit applies regardless of the size of the collection area and the time interval 
over which it is evaluated; the following average intensities all share the same unit: 
 

• the 1-minute average rainfall intensity measured by a standard meteorological rain gauge 

• the UK-wide average annual surface rain rate evaluated over a 10 year period 

• the instantaneous rainfall rate observed by a meteorological radar pixel of the order of 1 km2 
 
i.e. the unit does not seek to capture the variability over the time interval and the area of evaluation; 
in particular it does not contain information regarding peak values of high intensity rainfall within the 
sample.  This is discussed in depth in the report by Dixon (2018)30. 
 
When considering attenuation, for example, a CAV sensor will typically be concerned with near 
instantaneous rainfall distributed over a path length of order 10-200 metres.  The degree of sensitivity 
to the precise detail of this rainfall over that path length will be dependent on the degree of non-
linearity between attenuation and rainfall rate – a linear relationship will be less sensitive to using an 
average rainfall value to estimate path attenuation.  
 
While there is no single conversion formula between rainfall measurements, much is understood 
regarding the relationship between the different scales and this is now applied to the CAV sensor 
characterisation challenge through the consideration of a simulated case study derived from a real-
world event.  As there are a number of important steps, it is worth mapping out the approach taken 
end-to-end first: 
 
1. Case study: A significant rain UK event is identified from the Met Office’s archive of operational 

high rainfall radar data. 
2. Scaling factors: A statistical description of the variability within the radar picture is determined, 

yielding “universal” scaling parameters that describe the variability of the rainfall value at both 
higher and lower resolutions to that observed.   

3. Small scale simulation: These factors are then used to simulate realistic rainfall variation at 
progressively smaller scales within a single observed 2x2km radar pixel in order to demonstrate 
the “hidden” variability that is relevant to a CAV sensor. 

4. Conversion to attenuation: At each of these different scales, these rainfall values are converted 
to 77 GHz 2-way attenuation values, using the extinction coefficient calculations described 
previously.  This provides insight into the possible differences between the real attenuation (i.e. 
CAV scale) and that which might be inferred from the rainfall rates provided by meteorological 
observing networks. 

5. Impact on the KPI: By considering a range of sensor to target distances, the impact of these 
differences on the interpretation of the maximum range KPI are demonstrated. 

6. Practical approaches to resolution: Two different approaches to managing the complexities of 
variability are introduced in brief.  

 
Each step will now be described in turn. 

 
30 Dixon, J (2018) Report for Innovate UK Short-period rainfall extremes in the UK, available from 
https://www.metoffice.gov.uk/services/transport/cav 

https://www.metoffice.gov.uk/services/transport/cav
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Case study 

As part of its role as the UK National Meteorological Service, the Met Office produces analyses of 
instantaneous surface rainfall over the UK every 5 minutes.  These are derived primarily from 
operational C-band radar data, supplemented where necessary with satellite data.  These data are 
archived, allowing access to recent historical real weather events. The UK is served by 15 radars, 
complemented by others in Ireland and the Channel Islands as indicated in Fig 8. 

 
 

 
Figure 8: The UK weather radar network and its coverage quality.  Observations taken nearer to the 
radar sites are typically closer to the ground and of higher implicit resolution, thereby improving 
the quantitative estimate of surface precipitation 

 
The combination of scanning geometry, sampling regime and antenna pattern of the radar, means 
that the spatial resolution of the radar and the height at which the precipitation is sampled is a 
function of location of the measurement with respect to radar.  It also implicitly is a measurement in 
polar coordinates.  For that reason, products are generally mapped onto a Cartesian grid which are 
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available in real time at granularities of 500 m and 1 km.  They are also archived for general use at a 
resolution of 2 km, which we take as our starting point for the spatial analysis of this study. 
 
The case study chosen is the large scale convective event of the 23rd June 2016, which brought 
significant disruption to London and SE of England as it was already used to demonstrate the impact 
of rainfall on 5G networks in a joint study with Ordnance Survey and 5G Innovation Centre31, which 
relates closely to this challenge as 5G wavelengths are close to those of CAV sensor. 
 
Fig 9 below provides one frame of the radar data from this case 

 
 

 
Figure 9: Radar rainfall rates for the 23rd June case for a 50x50 km box.  Due to the proximity of the 
nearest radar, it is possible to generate a meaningful 100 m resolution mapping as well as those at 
500 m and 2000 m.  Careful inspection shows how the larger averaging area removes detail and 
extreme rainfall values 
 
 

Scaling factors 

Starting from a standardised gridded rainfall product, it is then possible to infer the small scale 
structure of relevance to the CAV through the consideration of the fractal nature of turbulence in the 
atmosphere. 
 
Turbulent wind flow structures exist over a wide range of scales in the atmosphere, from the planetary 
~10,000 km scale to the 1 km scale, and even down further to the millimetre scale.  These fluctuations 
in wind velocity, when viewed as “spectra” in the frequency domain, can usually be characterized by 
simple “scaling laws”; typically the wave power decreases exponentially with decreasing length scale, 
as described by the Kolmogorov (1941)32 theory. 
 
Rainfall intensity is a “passive tracer of turbulence”, that is it is affected by the turbulent motion of 
atmospheric eddies but has no effect on the turbulence itself.  As a result it can also have scaling 

 
31 The effect of the built and natural environment on millimetric radio waves (February 2018), Report for DCMS, 
published by Ordnance Survey, available from https://www.gov.uk/government/publications/ordnance-
survey-5g-planning-and-mmwave-environment-reports 
32 Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for very large 
Reynolds numbers. In Dokl. Akad. Nauk SSSR, 30(4), pp. 301-305. 

https://www.gov.uk/government/publications/ordnance-survey-5g-planning-and-mmwave-environment-reports
https://www.gov.uk/government/publications/ordnance-survey-5g-planning-and-mmwave-environment-reports
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behaviour; as demonstrated recently at scales down to ~1 m by Lovejoy and Schertzer (2008)33.  The 
scaling factors for this case study were determined, thus allowing the simulation of spatially realistic 
rainfall fields at scales both larger and smaller than those observed by the radar.  Figure 10 shows 
simulated rainfall fields equivalent to those in the previous figure. 

 
 

 
 
Figure 10: Simulated radar rainfall rates for the 23rd June case for a 50x50 km box using the scaling 
factors derived from the real radar data.  The two figures should not be expected to look the same, 
however the variability of rainfall rate at the different scales are statistically very similar.  The 
simulation is there considered to be a well understood version of real rainfall for the purposes of 
this study 

 

Small scale simulation 

Now that the scaling factors are known, it is possible to explore the variability of the rainfall on 
increasingly smaller scales.   In this study we start with a single radar-derived rainfall intensity in a 2x2 
km pixel (Note there is a degree of arbitrariness about this, it could equally have been 1x1 km).  The 
important point is that it represents a sensible “observed scale” that is significantly larger than the 
path length of interest to a CAV. 
 
Important note: From this point on the colour scales for the plots move from a log-scale to a linear 
scale and are not directly comparable with the previous ones.    
 
The starting point for the analysis is a “simulated” 2x2 km pixel (Fig 11) with an average rainfall 
intensity of 50 mm/h, which is considered to be very heavy rainfall over this averaging area.  

 
33 Lovejoy, S. and Schertzer, D., 2008: Turbulence, raindrops and the l1/2 number density law. New Journal of 

Physics, 10(7), p.075017. 
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Figure 11: A 2x2km radar pixel with an average rainfall intensity of 50 mm/hr 

 
The scaling factors are then used to generate a statistically valid representations of rainfall at 
progressively finer resolutions, by subdividing the pixel into smaller areas, all of which would combine 
to a 2x2 km average of 50 mm/hr 34.  Fig 12 shows a number of these realisations. 

  
  

 
34 Strictly speaking, the very highest resolution version (corresponding to 1 m pixels) was generated first and 
all intermediate resolutions produced by progressively averaging over larger areas, however this has no 
bearing on the discussion. 
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Figure 12: The same 2 km rainfall pixel divided into smaller subpixels, all with a 2x2 km average 
intensity of 50 mm/h.  The approx. pixel sizes are (top left to right) 1 km & 500 m and (bottom left 
to right) 250 m, 62 m & 1 m 
 
 
For completeness, it is noted that this scaling relationship approaches its limits at scales below 1 m.  
This is because the inertia of individual raindrops means that they do not follow the small scale 
turbulence, which are the driver of the scaling laws.  Also at these smaller scales, the time variability 
of the rainfall (as they fall as individual droplets through a smaller surface area) also becomes an issue.   
This has to be borne in mind when considering the extent to which these techniques are used to 
provide simulated weather in a virtual test environment.  As before, at this stage these simulations 
are not offered as fit for the purpose for use in a simulator without further investigation. 
 

Conversion to attenuation 

The previous section discussed how attenuation values can be estimated for a given rainfall intensity 
by assuming a functional form of the drop size distribution (DSD) with rainfall rate35.     The grids of 
rainfall rates above were therefore straightforwardly converted to attenuation values assuming the 
Marshall-Palmer DSD.   This was chosen as a DSD which is considered to the ‘middle of the pack’.  
Others will yield different absolute values.  Also it is acknowledged the exact functional form of DSD 
can varying across a single weather system.  Care is taken therefore to ensure the conclusions drawn 
from this simulation, namely the need to pay careful attention to spatial scales, are robust to these 
assumptions.    Fig 13 shows the attenuation values corresponding to the rainfall plots above for a 77 
GHz automotive radar. 

 
 

 
35 It is stressed again here, that these calculations will produce an attenuation that ignores the fact that some 
of the signal scattering may be in a strongly forward direction and may therefore represent an overestimated 
effective attenuation compared to real world, most particularly for lidar and visible wavelengths.  This was a 
factor in deciding to focus on 77 GHz radar. 
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Figure 13: 77GHz 2-way attenuation values within a 2 km area, corresponding to the previous 
figures.  The approx pixel sizes are (top left to right)  2km, 1 km & 500 m and (bottom left to right) 
250 m, 62 m & 1 m 
 
 
It is clear from the figure above that, depending on where within the original 2x2 km a CAV is situated, 
the low resolution “observed” rainfall rate (and therefore calculated attenuation) may be significantly 
higher or lower than that actually encountered.  This is demonstrated by the next figure.   
 

Impact on the KPI 

Consider a CAV travelling from the left to right across the example 2x2 km square, through the most 
intense part of the rainfall (centred approximately 500 m East and 1400 m North of the origin).  Fig 14 
demonstrates how the rainfall rate in the location of the CAV (and therefore the 2-way attenuation at 
77 GHz) can significantly exceed that which might be inferred from the lower granularity 
“observation”.    A worst case 200m section is demonstrated through a local peak of rainfall.  
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Figure 14: (Top) A section of high resolution rainfall rates representing a the section along ‘1400m 
North’ through the 2x2 km sample area.  This represents “truth” in simulation 
(Bottom) The calculated 2-way attenuation values from those rainfall values.  The dashed blue line 
is the attenuation value calculated from the 2x2 km average of 50 mm/hr.  The shaded pink area 
represents a 200 m section through this peak, corresponding to a reasonable sensor-to-target 
viewing range 
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The implications of this can be interpreted as follows: 
 
1. Consider a 77GHz radar mounted on CAV driving along a road during a heavy rainfall event.  The 

CAV’s ADS system receives an external feed of radar-derived rainfall data at a resolution of 2x2 
km, indicating that the car will experience an average rainfall intensity of 50 mm/h. 

2. At its current speed CAV is deemed to be safe in conditions where the maximum range KPI for the 
radar is greater than 200 m. 

3. Using a combination of external testbeds and controlled environmental tests facility 
measurements, the 77 GHz radar has been demonstrated to be able to function normally when 
the total 2-way attenuation due to rainfall is 9 dB or less.  The 2-way attenuation through a 
uniform rate of 50 mm/h over 200m is 8.88dB and so the CAV is deemed to be within its ODD at 
50 mm/h. 

4. Within the 2x2 km area, the rainfall demonstrates significant variability, and the CAV experiences 
a local peak in intensity. 

5. As the CAV encounters the high rainfall area, it experiences spot rainfall rates exceeding 150 
mm/hr.  The maximum total attenuation over the 200 m range was 13.90 dB. 

6. The CAV exceeded its ODD. 
 
It is essential therefore that when comparing the rainfall intensities experienced in the testing process, 
which will inherently be small scale, with those observed/estimated/forecast in the operational 
environment that these spatial effects are properly accounted for, either explicitly or within the error 
budget.   This has been reflected explicitly in the description of rainfall in PAS 1883.   
 
A few notes about temporal variability 
1. The example uses weather radar (or equivalently any grid of spatially averaged intensities) to 

demonstrate the need for care when evaluating the ODD.  Another standard form of 
meteorological measurement is the rain gauge.  As discussed in Dixon (2018), this samples average 
rainfall intensity over the order of a minute (or more) but over a much-reduced sampling area of 
order ~0.1 m2.  It is possible to construct linkages between radar rainfall values and rain gauge 
values (for example by advecting high-resolution spatial simulations over a virtual rain gauge, or 
by comparing rainfall and radar accumulations over longer periods such as an hour), however care 
must be taken as ultimately this will depend entirely on the rate of motion (and speed of 
development) of the weather system producing the rain. 

2. This example above explores the issues around spatial variability where the meteorological rainfall 
monitoring system is observing on a large spatial scale.    For completeness, it is noted that there 
is an inherent assumption that the CAV radar is “seeing” a constant (in time) sample of this rainfall 
i.e. its beam is sufficiently broad and its integration time sufficiently long that the attenuation 
does not vary in time.  However the real rainfall will manifest itself as a sequence of samples from 
an average DSD and the exact nature of the impact of this will be sensor specific.     Nevertheless 
the example is a robust demonstration of the need for careful handling of spatial scales. 

3. This time/space effect must be carefully considered in the context of the sensor tests themselves.  
Depending on the integration time and beam width (or field of view) of the sensor under test, at 
any instant in time the sensor will “see” a different sample of raindrops to that being measured 
by any associated meteorological observing kit, even if it is very closely located; the CAV sensors 
and meteorological observations are simply sampling from the same statistical distribution which 
comprises random individual events.  Comparison will therefore have to be made over integration 
times that allow both to sample the distribution adequately, which will be a necessary step in 
order to link sensor performance to the measurable parameters of the ODD.  This will be explored 
further as part of any external testbed demonstration. 
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Practical approaches to resolution 

This section demonstrates that the complexities associated with spatial and temporal variability can 
be managed.  There are fundamentally two different approaches: 

• ‘ODD’ space: By adopting a more conservative ODD rainfall threshold to that established by 
testing 

• ‘Sensor’ space: By adding a safety margin onto the 2-way attenuation determined by testing 
for a given rainfall rate 

 
No recommendation is made here, however it is instructive to consider the challenge from both 
angles. 

ODD space 

In the above example, the spatial variability of rainfall within the 2x2 km pixel led to a maximum 200 
m 2-way attenuation of 13.90 dB, compared to a value of 8.8 dB calculated from the pixel average 
rainfall of 50 mm/hr.  Assuming the spatial variability remains the same, it is possible to identify the 
average 2x2 km pixel rainfall intensity that yields a peak value of 200 attenuation equal to the safe 9 
dB limit.  This value is 27 mm/hr.   
 
In summary, if the test environment had demonstrated the 77 GHz would operate nominally at a 
rainfall rate of 50 mm/hr, the rain fall ODD should be specified as “Rain rate less than or equal to 27 
mm/hr as defined by a 2x2 km resolution rainfall product”.   Clearly there are a number of caveats 
around this (including assumptions of rainfall type), however it is broadly indicative of how the spatial 
variability might be managed in “ODD space” and would readily support the addition of confidence 
margins associated with the sensor assurance measurement uncertainty. 
 

Sensor space 

An alternative perspective is to consider the impact of the rainfall variability on the sensor itself i.e. 
ask the question “What error in calculated attenuation might the sensor experience if the 
operationally determined rainfall estimate is taken at face value?” 
 
To explore this question requires an assumed ‘truth’, which is the highest resolution simulation of 
rainfall within the 2x2km pixel.  In this case this when the 2x2 km pixel is divided into a 2048x2048 
grid of subpixels, each roughly 0.5 m square36. A range of interest is then chosen; here 250 m is 
selected as it is close to the 200 m used earlier37. 
 
The whole 2x2 km area can be subdivided into a total 16,384 lengths of 250 m; 8 in the x-direction by 
2048 in the y-direction.   For each sample length, the 2-way path integrated attenuation (PIA) can be 
calculated by summation of the individual pixels along that length, using attenuations derived from 
any underlying resolution of rainfall data.   This is explained fully in Fig 15. 

 
 

 
36 Although in practice, such a small subdivision is not required. 
37 As can be seen from the figures, 250m corresponds exactly to a factor-2 subdivision of our original pixel, 
which significantly aids the analysis. 
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Figure 15: Exploring the effect of the resolution of the underlying rainfall dataset.  From left to right 
the panels represent 2-way attenuation (dB/km) for the 2x2 km area at resolutions of 2 km, 250 m 
and ~1 m i.e. the values that would be inferred if the rain were observed/measured at that 
resolution.   The far right panel is the ‘truth’ for this exercise.   
The red line is an example 250 m range over which the total 2-way path integrated attenuation (PIA) 
is calculated.  The orange line is a second example path.  A total of 16,384 PIAs are calculated. 

 
In the figure for each sample, the ‘real’ 250 m 2-way attenuation is that which is calculated from the 
rightmost panel.  The other two represent the values if calculated directly from rainfall values 
measured at a lower resolution.  Visual inspection suggests that it is perfectly possible for the 
attenuation inferred from a rainfall measurement that is significantly more coarse than the scale of 
interest to CAV to be an underestimate as well as an overestimate of the actual attenuation.  The 
former is likely to have the greater safety implication.   
 
Fig 16 demonstrates this at summary level as the probability (and cumulative) distribution functions 
of PIA ‘error’ from all of the 16,384 paths in the 2x2 km area.  Of these, the cumulative distribution 
function suggests a mechanism for how to manage the uncertainty around ODD exceedance that 
arises from suboptimal measurement of the weather when the CAV is on the road. 
 
Consider again the case where the test environment had characterised the 2-way attenuation at 77 
GHz in a rainfall rate of 50 mm/h, this time over 250 m.  When the CAV is deployed operationally it 
enters an area where the 2x2 km rainfall measurement suggests an intensity of 50 mm/h.    If this 
rainfall rate is assumed to be representative of the path directly in front of the CAV, then (by eye), the 
CDF value at ‘zero error’ is approximately 0.6 i.e. there is a 40% chance that the real attenuation will 
exceed this.  In order to be more confident of our estimate we would have to add a ‘safety margin’.  
The construction lines in the figure suggest that our confidence that the CAV is <= our estimated 
attenuation can be increased to 95% (CDF=0.95), by adding 5dB onto the attenuation.  If the rainfall 
is observed at a higher granularity a smaller safety margin is required because the observation has 
captured more of the CAV-scale variability.  So if the rainfall measurement is made at 500x500 m, only 
3 dB has to be added to the estimated attenuation to achieve a 95% confidence. 
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Fig 16: (a) Probability distribution functions for the ‘error’ in 2-way path integrated attenuation (PIA) 
when calculated directly from rainfall rate ‘measured’ at different spatial resolutions, all consistent 
with a 2x2 km average rainfall intensity of 50 mm/h.   
(b) The corresponding cumulative distribution functions. While the data are all simulated, it is clear 
that the spread of error values can be reduced significantly via improved granularity of the rainfall 
measurement.  The dashed lines refer to values associated with a 0.95 CDF value (see text) 

 
The message is clear – greater confidence in assessing whether the CAV sensor is within its ODD comes 
with higher resolution measurement of the ODD parameter (rainfall in this case).  However it is 
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possible to mitigate suboptimal measurement of the ODD through the adoption of confidence safety 
margins. 
 
For completeness, the above exercise can be repeated for other, typically shorter, path lengths.  Fig 
17 shows the error the distribution of PIA with range length of interest.  There are two notable trends 
in these plots.  Firstly, the error spread in calculated attenuation increases with range (as can be seen 
by looking at any single figure).  This is simply due to the cumulative errors over longer path lengths.  
Secondly, between figures the spread for a single target range of interest decreases as the resolution 
of the underlying meteorology improves, as discussed earlier.  (In fact, Fig 17 was effectively created 
by using the 250 m lines from each of the plots in Fig 16). 

  



NPL/Met Office:  Stage 1 report (Revision 1.1)   

 

 
 
Figure 17: Probability density functions of the simulated error in 2-way PIA (in dB) resulting from 
calculation directly from a low spatial resolution rainfall field for a selection of target ranges.  The 
resolution of the ‘measured’ rainfall field increases from 2 km [(a) top left)] to 250 m [(d) bottom 
right] , with an associated reduction in spread as the meteorological measurement approaches the 
CAV-relevant scales. (b) is 1 km and (c) 500 m. A positive x-axis value indicates the ‘true’ attenuation 
is greater than that inferred from the measured rainfall.  Note the logarithmic y-scale which means 
that the extreme errors may appear exaggerated 
 

“ODD space” vs “Sensor space”  

Neither of these options, “ODD space” or “Sensor space”, are offered as recommendations at this 
stage, not least because they only explore a small part of the error budget and the case studies are 
highly idealised.  However, both demonstrate how uncertainties associated with meteorology can 
begin to be factored into the management of uncertainty in the sensor assurance framework and the 
application of it outputs in operation. 
 
A systems thinking approach to managing uncertainty 
The sections above demonstrate that even in a simplified and idealised case, there are a number of 
mechanisms through which sensor characterisation (in the test environment) and performance 
assessment (in the operational environment) are impacted by uncertainty.    
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It is worth briefly considering the relationship between these two, again in a simplified context.   
Consider a CAV sensor that has been characterised in test environment with respect to a given ODD 
attribute (e.g. rain).    The KPI (e.g. maximum ranges) reaches a minimum acceptable value at a given 
rain rate threshold T.   This threshold has an estimated uncertainty value of  ΔT.  In operations, the 
CAV receives updated information about its operating environment, in particular the actual rainrate 
in its location, A.  For the reasons above, A is not known exactly and its estimated uncertainty us 
correspondingly ΔA.  A and T are in the same units and a critical value is the difference between the A 
and T, i.e. the proximity to the ODD edge (A-T).  While the measurement challenges associated with 
determining A and T may share some common underlying drivers, for the calculation of (A-T) when 
the CAV is on the road they are independent.  The uncertainty E in determining the proximity to the 
ODD edge may therefore simply be written: 
 

𝐸 = √∆𝐴2 + ∆𝑇2 
 
Fig 18 shows how these errors combine using arbitrary units.  It is clear that while reducing both ΔT 
and ΔA will result in lower uncertainty (increased confidence) in determining the proximity to the ODD 
edge, the confidence budget is dominated by the largest source of uncertainty.          

 

 
 
Figure 18: Values of uncertainty in the proximity to an ODD edge (in arbitrary units) given 
uncertainties in determining a critical ODD threshold value T in the test environment and the 
uncertainties in measuring the actual value of the ODD attribute A in operations.  Colours are used 
to highlight different bands of total uncertainty 
 
This leads to an important consideration – the sensor assurance framework is part of a larger system 
involving both sensor characterisation with respect to the weather and the realtime determination of 
the weather in the location of the CAV on the road.  Should one source of uncertainty dominate, then 
investments in the other may not fully pull through into the ability of the CAV to operate confidently 
within the widest possible ODD.  This should inform both the level of investment in each part of the 
system and the measurement protocols developed in the sensor test ecosystem. 
 
For completeness, two further points should be noted: 

 

• The degree of the impact of the aforementioned total uncertainty in the proximity to the ODD 
edge is a function of the how far away from the edge the CAV sensor i.e. it becomes a 
consideration only when the uncertainties are comparable to, or greater than, the separation.  
While a statement of the obvious, this has implications for ODD measurability because as the 
separation becomes much greater than the uncertainty, it shifts the emphasis from accurate 
measurement of the ODD parameter towards a more categorical demonstration that the 
environment is well away from the ODD edge, which may be easier to deliver operationally. 
 

• The term measurability is increasingly used to describe our ability to characterise the relevant 
ODD parameters.  In the meteorological context, it is not always necessary to ‘physically’ measure 
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the parameter; a forecast or nowcast of the ODD parameter may be sufficient.  For example, if a 
CAV sensor has been demonstrated to work up rainfall rates that would only be experienced in a 
highly convective shower (e.g. a thunderstorm), a forecast that indicates 0% chance of 
thunderstorm is an acceptable measurement for quantifying the ODD. 

 
The above discussion leads to the “Linkage to the Operational Design Domain (ODD)” 
recommendation in the critical success factors of the main report. 
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Appendix G: Indicative meteorological measurements at the external testbed 

 
Indicative meteorological equipment list for comprehensive external test bed 

Item/height Quantities Justification 

10m   

Sonic anemometer, PRT, 
humidity sensors 

Winds, turbulence, heat and 
moisture fluxes, T, RH,q 

10m is standard height for wind 
measurement. Effect of 
turbulent fluxes on rainfall can 
be assessed. Effect of Humidity 
on vehicle sensors can be 
assessed. 

2m   

As 10 m  As 10m As 10m but at car height. 
Allows cross-checking with 
10m data. 

Radiation: Up and downwelling 
radiometers/pyrgeometers  

Up and down-welling short and 
longwave radiation. Grass tip 
temperature. 

Radiation levels add 
information regarding cloud 
and visibility, plus aid 
assessment of vehicle cameras 
(?) 

Disdrometer (5) Network over 100x100m of 
rainfall and rain drop size 
distribution. Precipitation type. 

Network allows some small-
scale assessment of rain to be 
made. Direct assessment of 
rain on vehicle sensors possible 

Precipitation particle 
spectrometer 

size distribution, fall velocity, 
and rain rate of droplets from 
50 µm to greater than 6.4 mm 

Reference standard for 
assessing limitations of 
cheaper disdrometers 
(especially larger droplets) 

Fog spectrometer LWC, mean radius, droplet 
spectra (2-50 microns dia) 

Assessment of fog on vehicle 
sensors 

Aerosol spectrometer Aerosol size distributions, 
optical depth (0.25-30 microns 
dia) 

Quantify effect of hydrating 
aerosols on vehicle sensors 

Grass level 
 

  

Aspirated shield with T & RH T and RH Allow assessment of dew 
probability and surface icing. 

Rain gauges Event-led rainfall rate ‘Reference’ for disdrometers, 
plus during high rain rates may 
provide more temporal 
resolution. 

Other   

Ceilometer Cloud base, gradients in 
aerosol content 

Assessment of cloud base on 
vehicle sensors. 

Web Cam Visual images General assessment of weather 
and security 
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Appendix H: Global rainfall distributions 

 
Preamble 
With regard to the external test beds, it is obvious that these will contribute most to the 
assurance process when their exposure to the weather element of interest is maximised.   In 
short, in the context of this proof of concept study, it is desirable to locate the testbed(s) 
where there is frequent heavy rain. 
 
This appendix describes a short exploratory study of readily-available literature, to identify 
where such regions might be.  It is stressed here that, with a focus on extreme instantaneous 
rainfall intensity, it is not fully comprehensive, focussing mainly on the convective rainfall 
case.   Further consideration must be given to the orographic and dynamic cases as follow up 
work. 
 
Summary 
Those areas where the most intense, sub-daily rainfall will occur most often are identified as 
being in the Tropics, between approximately 23° of latitude north and south of the Equator. 
The lack of sub-daily rainfall data to analyse for these areas led to a literature search, where 
the world of telecommunications proved a rich source of useful information.  
Telecommunication designers seek to minimise the attenuation of electromagnetic (typically 
radio) waves due to various confounders, one of which is rainfall. To assist with this an 
International Telecommunications Union standard has focussed upon the 1-minute average 
rainfall rate with a risk of annual exceedance of 0.01% in any year.  The standard contains 
methods to calculate this value for any location and also a global map. This ‘near extreme’ 1-
minute rainfall rate approaches the relevant timescale for CAV, however as indicated in 
Appendix F, great care is required to link these values to those measured in the testbed 
environment.  
 
Using the above definition, the highest near-extreme 1-minute rainfall rate derived from the 
standard for the Tropics is of the order of 100 mm/h. Various pieces of independent research 
suggest that the standard tends to underestimate conditions, with their results suggesting 
values for the Tropics of the order of 150 mm/h or higher. 
 
Background  
An initial Met Office report for Innovate UK (Dixon, 2019)38 considered extreme rainfalls in 
the UK using both observed data and published design guidelines. It concluded that, for the 
UK, the climatology of summertime, extreme convective rainfall in SE England provides an 
appropriate worst case for the whole of the UK.   Building design guidelines suggested 2-
minute storms with rates varying from 80 mm/h (a twice a year event) through to 320 mm/h 
(a 1 in 500-year event) in the London area.  This study extended that work to consider rainfall 
rates around the world. 
 
Focus of this study 
The aim of this study was to identify the global distribution of impactful rainfall rates, over 
very short periods (minute or less), to inform the possible locations of future external CAV 

 
38 Dixon, J., 2019: Short-period rainfall extremes in the UK, Met Office Report for Innovate UK, available from  
https://www.metoffice.gov.uk/services/transport/cav 
 

https://www.metoffice.gov.uk/services/transport/cav
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sensor testbeds.  The aim was not specifically to seek the maximum values achievable, 
although some commentary is given for context. 
 
As the Met Office archives for overseas data have, at best, only 3-hourly totals of rainfall (most 
locations have 6-hour totals), their use in establishing sub-hourly rainfall rates is limited.  
Consequently, no climatological data have been analysed here. This study contains a brief 
description of global rainfall, the identification of relevant areas and the results of a literature 
search for near-extreme global, sub-hourly, rainfall rates.  
 
Global Rainfall Regime 
The highest intensity rainfall rates are most likely to be experienced in convective rainfall, i.e. 
rain that is caused by the vertical motion of an ascending mass of air that is warmer than its 
environment; the horizontal dimension of such an air mass is generally of the order of 15 km 
or less and forms a typical cumulonimbus (Cb)39 cloud. Convective rain is sometimes 
accompanied by thunder and hail. 
 
The climate of a region is mainly defined by its latitude, distance from the sea, prevailing 
winds and altitude. The most well-known global climate classification is that due to Köppen40, 
see Figure 1 for an updated version of this map. Those areas of the world where the ideal 
combination of heat and moisture combines to produce the most frequent and intense 
convective rainfall described in the previous paragraph will be within the Tropics, 
approximately 23° north and south of the Equator. These areas coincide with the red/pink 
regions of Köppen’s map and are defined as Tropical with sub-groups depending upon 
whether the region is humid all year, only in the winter, only in the summer or experiences 
Monsoon conditions. Such areas include, Malaysia, the Philippines, Indonesia, parts of central 
Africa and much of the Amazon basin. The darkest red regions, described as ‘Equatorial Fully 
Humid’ in Figure 5, will be the areas where convective rain will be more frequent and more 
intense. Annual average rainfalls in excess of 2,500 mm are likely in these areas.  
 

 
39 http://www-web/glossary/C/CUMULONIMBUS.html 

40 Kottek,M., Grieser,J., Beck,C., Rudolf,B. and Rubel, F.(2006): 'World Map of the Köppen-Geiger climate 

classification updated' Meteorologische Zeitschrift, Vol. 15, No. 3, 259-263 (June 2006), c by Gebrüder 
Borntraeger 2006. Open access: https://www.schweizerbart.de/journals/metz 
https://www.weather.gov/media/jetstream/global/Koppen-Geiger.pdf 

 
 

http://www-web/glossary/C/CUMULONIMBUS.html
https://www.schweizerbart.de/journals/metz
https://www.weather.gov/media/jetstream/global/Koppen-Geiger.pdf
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Figure 5:  
Kottek et al (2016) updated Köppen-Geiger’s climatological regions of the world.  
Thanks and acknowledgements to Meteorologische Zeitschrift for granting permission to 
reproduce this figure. www.borntraeger-cramer.de/journals/metz 

 
 
Figure 6 is a global, annual average rainfall map showing the variation in rainfall across the 
globe based upon data for the period 1991-200041.  Of note here is that, in addition to the 
tropical areas, there are a number of mid-latitude regions (on the western sides of the 
landmasses) that also have significant rainfall totals (including the UK).  These correspond to 
areas that are exposed to midlatitude depressions (dynamic rain), often with rainfall intensity 
enhancement due to air being forced vertically by mountains (orographic rain). 
 

 
41 https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_download.html   

http://www.borntraeger-cramer.de/journals/metz
https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_download.html
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Figure 6: Map of annual average rainfall, 1951-2000. 

Source: 
https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_dow

nload.html   
Thanks and acknowledgement to the Global Climatology Centre (GPCC) a part of the German 
meteorological service (Deutscher Wetterdienst DWD) for permission to reproduce this map. 

 
 
The tropical rainfall areas identified by Köppen, will be those parts of the world where 
convective rainfall (and therefore thunder and lightning) are more frequent. This is confirmed 
in the red and dark red areas of the global map of the number of lightning flashes per km2 per 
year in Fig 3. These coincide with the red areas of Köppen’s map but with some variations 
including central USA reflecting the preferred hurricane tracks along the east coast of the USA 
and tornado tracks in central USA, which result in intense rainfall conditions and associated 
thunder and lightning, occurring further north, beyond the Tropics. 
 
 
 
 
 
 
 
 

 

https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2020_doi_download.html
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Figure 3: World Lightning Map: The map above shows the average yearly counts of lightning 

flashes per square kilometre based on data collected by NASA's Lightning Imaging Sensor on the 
Tropical Rainfall Measuring Mission satellite between 1995 and 2002. Places where less than one 
flash occurred (on average) each year are grey or light purple. The places with the largest number 

of lightning strikes are deep red, grading to black. 
Source: https://earthobservatory.nasa.gov/images/6679/patterns-of-lightning-activity 

Thanks and acknowledgement to NASA’s Lightning Team for allowing reproduction of this figure.  

 
The areas identified, where convective rain occurs most often on a daily basis are within the 
Tropics, however this does not preclude more infrequent but equally intense events occurring 
in other parts of the world. For example, the official record, recognised by the World 
Meteorological Organisation (WMO), for the greatest amount of rain falling in 1 minute is 
31.2 mm (1872 mm/h) recorded on 04/07/1956 at Unionville, Maryland, USA, which is 
approximately 50 km north-west of Baltimore and about five thousand kilometres north of 
the Equator (WMO website https://wmo.asu.edu/).  A WMO publication42 (WMO, 1994) had 
suggested an even larger amount of 38 mm in 1 minute at Barot, Guadeloupe (Caribbean) but 
this appears to have subsequently been rejected. Other sub-hourly records included in that 
WMO publication include those in Table 1. 
 
 
 
 

 

 
42 WMO, 1994. Guide to Hydrological Practices, WMO no. 168, 5th Edition. World Meteorological Organisation 
(WMO), Geneva, Switzerland. 

https://earthobservatory.nasa.gov/images/6679/patterns-of-lightning-activity
https://wmo.asu.edu/
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Duration 
(mins) 

Rainfall 
(mm) 

Location Date 
Av Rainfall 
Intensity 
(mm/hr) 

5 62 Port Bells, Panama 29 November 1911 744 

8 126 Fussen, Bavaria 25 May1920 945 

15 198 
Plumb Point, 

Jamaica 
12 May 1916 792 

20 206 
Curteade Arges, 

Romania 
7 July 1889 618 

40 235 
Guinea, Virginia, 

USA 
24 August 1906 353 

42 305 Holt, USA 22 June 1947 436 

 
Table 1: Highest sub-hourly rainfall totals accepted by the WMO. 

Source: https://wmo.asu.edu/ 
 
The rainfall record at Holt is also the WMO’s official highest hourly total. Holt, Missouri, is 
approximately 40 km northeast of Kansas City, which places it in the infamous Tornado Alley 
of the southern USA. Rakhecha and Singh (2009) also provide significant rainfall occurrences 
for various countries including India, China, Australia and Japan.  For example, the maximum 
hourly rainfall total for a selection of station include 129 mm at Mumbai, 88mm at both 
Darwin and Brisbane and for Japan 187 mm at Do.  
 
There are methods available that attempt to calculate the maximum probable precipitation 
(PMP) that could fall from a column of air, knowing its meteorological characteristics (e.g. 
WMO, 200943). However, neither calculating this nor knowing the very worst extreme events 
will not be relevant for this report; near-extreme conditions will be more relevant as they 
relate more closely to climatological expectation to inform the possible siting of testbeds. 
Near-extreme conditions can be defined in any number of ways depending upon its 
application but one sector where heavy rainfall has a significant impact and, fortuitously 
apposite for CAV work, is the world of telecommunications. The next section considers this in 
more detail. 
 
 
Standards for Telecommunications 
The closely related discipline of telecommunications offers a means to access global 
precipitation information, that may be closer to being fit the for the CAV application.  In 
particular, the International Telecommunications Union (ITU) standard, ‘Recommendation 
ITU-R P.618-13(12/2017). Propagation data and prediction methods required for the design 
of Earth-space telecommunication systems P Series Radiowave propagation.’  (ITU-R,2017a44),  
which includes a consideration of rainfall.   ITU have chosen a 1-minute integration time as 

 
43 WMO, (2009). Manual on Estimation of Probable Maximum Precipitation (PMP).  WMO No. 1045, Geneva. 
 
 

https://wmo.asu.edu/
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being the most desirable for attenuation prediction (Mandeep and Hassan, 200745) and an 
annual probability of exceedance of 0.01%, taken to mean that there are only approximately 
53 minutes worse than this in the whole year of 525,600 minutes).  For brevity within this 
report, this rate is termed the ‘near-extreme rate’.  
 
A supplement to the afore mentioned standard, ‘Recommendation ITU-R P.837-7(06 /2017) 
Characteristics of precipitation for propagation modelling’ (ITU, 2017b46) contains a world 
map of these values of these ‘near-extreme rates based upon monthly mean rainfall for the 
50 years’ (1951-2000) of data from GPCC Climatology (V2015) database over land and from 
36 years’ (1979-2014) of the European Centre of Medium-Range Weather Forecasts (ECMWF) 
ERA interim data over water. This map is reproduced in Figure 4.  
 

 

Figure 4: Global map of ‘near-extreme’ rainfall rates (0.01%) based upon monthly mean 
total rainfall derived from 50 years (1951-2000) of data from the GPCC Climatology (V 2015) 
database over land and from 36 years (1979-2014) of the European Centre of Medium-range 
Weather Forecast (ECMWF) ERA Interim data over water. (ITU, 2017b). Thanks and 
acknowledgement to the ITU for granting permission to reproduce this map in this report. 
Note authorisation was granted on a non-exclusive basis and is non-transferable to third 
parties.  

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-13-201712-I!!PDF-E.pdf   

The Supplement shows that areas experiencing the most intense rainfalls are concentrated in 
the Tropics and approximately align with the ‘Tropical’ areas defined by Köppen, (shown in 

 
45 Mandeep JS, Hassan SIS.  2008.  ‘60 to 1-minute rainfall rate conversion: comparison of  
existing prediction methods with data obtained in the Southeast Asia region’.  Journal of  
Applied Meteorology and Climatology 47: 925-930. 
 
46 ITU (2017b) - ‘Recommendation ITU-R P.837-7(06 /2017) Characteristics of precipitation for propagation 
modelling’ (ITU, 2017b). https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-7-201706-I!!PDF-E.pdf 
 

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-13-201712-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-7-201706-I!!PDF-E.pdf
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the blue areas of Figure 1)  in particular south-east Asia, northern Australasia, central and 
western Africa, northern South America and the Caribbean. Values range from 90 mm/h in 
these highlighted tropical areas, through 50mm/h in sub-tropical regions (aligned 
approximately with the Koppen’s sub-Tropical regions coloured orange in Figure 1) and < 
20mm/h for North Africa, Middle East, Europe and Canada in the Northern Hemisphere and 
all areas south of 45° in the Southern hemisphere plus the western coast of South America 
south of the Equator and west of the Andes. 
 
The ITU standard gives guidance on how to use suitable local observations, if applicable, but 
in general these will not be available. If that is the case, the standard uses monthly rainfall 
and monthly temperature data using 50 years (1951-2000) of the Global Precipitation 
Climatology Centre (GPCC: operated by the German National Meteorological Service 
[Deutscher Wetterdienst, DWD] under the auspices of the World Meteorological Organization 
(WMO)),  Climatology (V 2015) data over land and 36 years (1979-2014) of the European 
Centre of Medium-range Weather Forecast (ECMWF) ERA Interim data over water. Using 
these monthly values and various statistical techniques eventually an estimated 1-minute 
rainfall rate is arrived at.  There is an accompanying spreadsheet containing monthly data and 
conversions factors to derive the 1-minute value, which appears to be based upon the 
method proposed by Segal (1986)47. These methods are discussed later in this section. The 
map in the standard (Error! Reference source not found.) provides an accessible means for 
communication engineers to arrive at the 1-minute value without having to go through the 
calculations. The standard suggests that the values derived from the map are within 0.3 mm/h 
of a calculated value for 99.9% of the world.   
 
There is a spreadsheet accompanying the Supplement, which has calculated the near extreme 
rate for a selection of latitudes and longitudes. The highest value in the spreadsheet is 99 
mm/h for Kuala Lumpur, Malaysia.  This is higher than the map value but it should be noted 
that the spreadsheet was released in 2019 and may contain more up-to-date information and 
so some differences are likely.  Looking at Kuala Lumpur on the map, this is where the very 
darkest red colour occurs; similar colours and hence similar values would occur in most of 
Indonesia, the Philippines, the coastal strip between Bangladesh and Vietnam, the coastal 
area around the Amazon River estuary and parts of Central America.   
 
The ITU spreadsheet also contains rainfall rates for other annual probabilities at Kuala Lumpur 
and the same information for a few other locations:- Southern Egypt, Miami, New Delhi, 
Rome and London plus some marine sites in the mid-Atlantic and the Mediterranean 
(between Malta and Libya). Table 2, provides an extract from this comparing the values from 
Kuala Lumpur with those from London. 
 
 
 
 
 
 

 
47 Segal, B., 1986: The influence of raingauge integration time on measured rainfall-intensity distribution 
functions. J. Atmos. Oceanic Technol., 3, 662–671. https://journals.ametsoc.org/doi/pdf/10.1175/1520-
0426%281986%29003%3C0662%3ATIORIT%3E2.0.CO%3B2  
 

https://journals.ametsoc.org/doi/pdf/10.1175/1520-0426%281986%29003%3C0662%3ATIORIT%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0426%281986%29003%3C0662%3ATIORIT%3E2.0.CO%3B2
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Location Lat Long 
Annual probability (%) 

0.01 0.1 0.15 0.3 0.35 

Kuala Lumpur 3.133 101.7 99.2 34.6 27.8 18.3 16.5 

London 51.5 -0.14 26.5 9.0 7.2 4.7 4.2 
 
Table 2: 1-minute rainfall rates (mm/h) exceeded for 0.01, 0.1, 0.15, 0.3 and 0.35% of an 
average year based for Kuala Lumpur and London. (ITU 2017b accompanying spreadsheet). 
 
The method used to produce these results is based upon one devised by Segal (1986), one of 
several techniques that have been published, for converting readily available longer-period 
rainfalls (daily, monthly or annual) to the required but scarcer sub-daily or sub-hourly values. 
Mandeep and Hassan (2008) assessed five different techniques for doing this and a brief 
description of each is given below. 
 
Segal (1986) –analysed ten years of high-resolution tipping-bucket precipitation records for 
45 locations in Canada to yield empirical conversion factors appropriate for five- or ten-
minute sampling times. The locations were chosen to provide a sampling of different 
climatological and physiographical regimes. This method is used as part of the process of 
producing the ITU map in Error! Reference source not found..  
 
Burgueno et al. (1988)48- analysed 49 years of rainfall rate measurements from various sites 
in Barcelona, Spain, to produce cumulative distributions for different effective gauge 
sampling intervals. They sought to develop a direct and universal expression between 1- and 
x-min integration rainfall rates.  
 
Chebil and Rahman (1999)49 - proposed an empirical method for approximating the rainfall-
rate conversion factor from a 60- to a 1-min integration for 82 locations in Malaysia. Hourly 
and annual long-term rainfall data (1991-8) were recorded using tipping bucket rain gauge 
(sensitivity of 0.5 millimetres per tip). The Chebil and Rahman method was developed based 
on seasonal and diurnal variations in convective storm rainfall. Stratiform rainfall was not 
considered.  
 
Moupfouma and Martin (1995)50- their method for integration times, ranging from 1 to 60 
minutes was based on rainfall-rate measurements taken at Chilbolton, United Kingdom, by 
the Rutherford Appleton Laboratory. Rain events from 1985 to 1992 were recorded using a 
tipping-bucket rain-gauge.  
 

 
48 Burgueno, A. M., M. Puigcever, and E. Vilar, 1988: Influence ofraingauge integration time on the rain rate 
statistics used in microwave communication. Ann. Telecomm.,10,522–527 
49 Chebil, J., and T. A. Rahman, 1999: Rain rate statistical conversion for the prediction of rain attenuation in 
Malaysia. Electron. Lett., 35, 1019–1021. https://www.crossref.org/iPage?doi=10.1049%2Fel%3A19990685 
 
50 Moupfouma, F., and L. Martin, 1995: Modelling of the rainfall rate cumulative distribution for the design of 
satellite and terrestrial communication systems. Int. J. Satellite Commun., 13, 105–115. 
 

https://www.crossref.org/iPage?doi=10.1049%2Fel%3A19990685
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Joo et al. (2002)51- this method, based upon only 2 years’ worth of rainfall-rate measurements 
from Korea, produced rainfall rate cumulative distributions for different integration times (1, 
10, 20, 30, and 60 min). Rainfall-rate data with various time integrations were collected using 
an optical rain gauge.  
 
Deriving the near-extreme 1-minute value is a two-part process that involves a) creating 
distribution functions of short-term rainfall rates (sub-daily) and establishing relationships 
between 1- minute and 60-minute totals (correlation coefficients unique to each 
location/study) then, b) using a conversion factor (Segal or other techniques) to convert an x- 
minute rainfall rate distribution into its equivalent 1-minute distribution. All involve power-
law relationships, very much along the lines of the spatial power laws in Appendix F, which 
Mandeep and Hassan suggest means that they can be used in both tropical and temperate 
regimes (see the individual articles for more details).  Note, no further investigations were 
conducted to test the validity of these methods in this report. 
 
Mandeep and Hassan’s conclusion was that the method devised by Segal (1986), was the best 
method (lowest overall percentage error) and they recommended its use in tropical areas, 
which is perhaps surprising as the results were based upon research throughout Canada.  
They did note, however, that the method tended to underestimate the 0.01% values with 
standard errors creeping up to 10% from well below 5% for the less rare annual probabilities. 
However, the method by Chebil and Rahman (1999), which used the Moupfouma and Martin 
(1995) method for a) and Segal’s method for b), produced smaller errors of up to 6% for the 
0.01% estimates but was less accurate at 0.1 and 1% probabilities. Similar comments about 
the errors were made about the Moupfouma and Martin (1995) method.  
 
Based upon these conclusions, it suggests that if 0.01% estimates are required for tropical 
areas, as required in this report, then the Chebil and Rahman (1999) approach might be a 
better choice if any future investigations into this area are required, using appropriate local 
data.  
 
Consequently, these methods open-up the possibility of estimating 1-minute values (not 
always globally measured but more relevant for this report) from hourly- or longer period-
values, contained in the Met Office archives or other sources, for a variety of annual 
probabilities of exceedances. Such work has already been carried out by various authors and 
all of these studies (based in the Tropics) indicate that the mapped and spreadsheet ITU 
recommended values are all lower than their calculated values. It is to be expected that site-
specific measurements and analysis would produce different and likely more accurate results 
to those derived from the monthly data and the ‘down-scaling’ techniques (to arrive at 
shorter time periods methods) used to produce the smoothed global map. Noting that the 
sign of these differences is consistently the same, means that the mapped values should be 
viewed as more conservative estimates (less extreme). The results of some of these studies 
are discussed and the ITU values quoted are from the 2017 standard: 
 

 
51 Joo, H. L., S. K. Yang, H. K. Jong, and S. C. Yong, 2002: Empirical conversion process of rain rate distribution 
for variousintegration time.Proc. URSI Commission F Wave Propagation and Remote Sensing, Maastricht, 
Netherlands, URSI,1450–1454 
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• Suryana et al (2005)52 provide annual 0.01% rainfall rates for 24 Indonesian locations, 
with values ranging from 109 to 159 mm/hr. The ITU map value – 90 mm/h; ITU 
spreadsheet value 99 mm/h (Kuala Lumpur) 

• Mandeep and Hassan (2008) analysed observed sub-hourly rain data from seven 
stations in Southeast Asia (Malaysia, Thailand, Indonesia, Philippines, Fiji, Singapore 
and Papua New Guinea). The results estimated rainfall rates of between 90 and 130 
mm/hr for the 0.01% one-minute estimate. Papua New Guinea and Philippines at the 
lower end and the others clustered at the higher end. ITU map value - 90 mm/h; ITU 
spreadsheet value 99 mm/h (Kuala Lumpur).  

• Rashid and Majumder (2011) calculated one-minute 0.01% rainfall rate estimates 
based upon annual average rainfall for 34 meteorological sites in Bangladesh using the 
Chebil and Rahman method, which produced values between 109-148 mm/h (23 of 
the 34 sites were between 115 and 130 mm/h). The ITU map value 90 mm/h; ITU 
spreadsheet value 99 mm/h (Kuala Lumpur); 63.6 mm/h for new Delhi. 

• TRMM satellite data analysed by Omotosho et al (2013)53 for 57 sites in Malaysia 
suggest 1-minute rates with 0.01% exceedance of 85-154 mm/h in Eastern Malaysia 
and 82-144 mm/h in Western Malaysia; the 0.001% values exceeded 200 mm/h. The 
deduced one-minute rainfall rates correlated fairly well with those obtained from the 
previous work carried out in Malaysia by Chebil and Rahman (1999), with correlation 
coefficients of 0.7 in all the 57 locations.  

 
It is pleasing to note that despite different methods, different data, different periods of 
analysis, the results show a similar range of values generally in the range 85-145 mm/h for 1-
minute rainfall rates with a probability of occurrence of 0.01% in tropical areas. As already 
noted, these estimates are all higher than those suggested by ITU, although the maximum 
ITU value lies within this range but nearer the lower boundary. Omotosho et al (2013) 
comment in their paper that the ‘ITU-R SG3 database (2009) predictions for the 0.01%, 1-
minute rainfall was found to be valid for only limited areas in Malaysia and underestimates 
the remaining regions’. From the dates of the research, the results must have been compared 
to an earlier version of the standard, possibly ITU (2007)54. However, even the updated 
information in the 2017 standard map (figures quoted above), still appears to underestimate 
the values produced by the independent pieces of research discussed. Therefore, this 
underestimation needs to be born in mind when using the ITU mapped information. 
 
Summary  

• Those areas where the most intense, sub-daily rainfall will occur most often have been 
identified as being in the Tropics, between approximately 23° north and south of the 

 
52 Suryana J, Utoto S, Tanaka K, Igarashi K, Iida M.  2005.  ‘Study of prediction models  
compared with the measurement results of rainfall rate and ku-band rain attenuation at Indonesian tropical 
cities’.  5th International Conference on Information, Communications  
and Signal Processing, Bangkok, Thailand. 
 
53 Omotosho, T. V., Mandeep J. S, , Abdullah M., and Adediji, A. T. (2013): ‘Distribution of one-minute rain rate 
in Malaysia derived from TRMM satellite data’. Ann. Geophys., 31, 2013–2022, 2013 
 
54 ITU (2007): Rec. ITU-R P.837-4 1 RECOMMENDATION ITU-R P.837-5. ‘Characteristics of precipitation for 
propagation modelling (Question ITU-R 201/3) (1992-1994-1999-2001-2003) 
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-4-200304-S!!PDF-E.pdf 
 

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-4-200304-S!!PDF-E.pdf
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equator. On average, 150 thunderstorms days per year are likely and over 70 lightning 
strikes per km2   could occur in these areas. Other areas of the world could experience 
equally extreme rainfalls but far less frequently. 

• Identifying the absolute extreme rainfall intensities is not really relevant for the 
purposes of this report because the intent of the study to begin to inform locations 
with increased likelihood of high intensity events. (Near-extreme events will be more 
useful.) 

• Time scales of a minute, begin to approach the timescales of direct relevance to the 
CAV case, however there are no data on this time scale available for the (global) areas 
of interest in the Met Office archives; three- or six-hourly totals are the norm. 
Therefore, no analysis of data has been carried out in this study. 

• A literature review has discovered a useful source of near-extreme (0.01% annual 
probability of exceedance) 1-minute rainfall rates. These are required by the 
telecommunications industry to mitigate against the attenuation of radio waves (and 
others) by rainfall.  International standards (International Telecommunications Union 
- ITU) exist containing global maps of this statistic (also methods to estimate the value 
from longer sampling time intervals) and confirm that the Tropics is the area most 
likely to provide a reliable number of high intensity rainfall cases. 

• The ITU map is based upon global model data and various techniques to convert 
monthly rainfall statistics to rainfall rates on a sub-hourly basis for a variety of annual 
probabilities of exceedance. The highest values derived are in the order of 100 mm/h 
for areas such as Malaysia. 

• Work by independent researchers suggest that the ITU values tend to underestimate 
those produced by analysis of on-site observations. Results from a variety of locations 
across the Tropics suggest the highest 0.01% 1-minute rainfall rates are generally 
between 85-145 mm/h.  

• Note, while the Tropics is mostly likely to provide sites that will allow more frequent 
access to intense convective rainfall event, it may well be possible to find locations to 
sample intense orographic rainfall within the UK.  This was not explicitly addressed in 
this study so further work is required in this respect. 
 

Recommendations 
Due to the lack of sub-hourly rainfall data for the Tropics available to analyse, it would appear 
that the procedures and values accepted by the global telecommunications sector represent 
the most accessible without further study. The ITU standard’s maximum 1-minute rainfall rate 
is of the order of 100 mm/hour but further independent research might suggest higher values 
up to 150 mm/h. 
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