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• Data like this from UK Climate 
Projections (UKCP18) are fed into 
impact studies (e.g. floods, heat 
extremes), which then inform the UK’s 
climate change risk assessment, that 
informs the National Adaptation plan.

• Each of the thin lines are a 
”plausible” simulation of how rapidly 
global temperature might increase 
under a scenario of intensive fossil 
fuel emissions.

• But what is “plausible”? We filter out 
many alternative simulations based on 
carefully quantified comparisons with 
observations.

Climate modelling and projections



Probabilistic projections
Uses a Bayesian 
framework (Goldstein and 
Rougier 2004; Sexton et al 
2012)

Combination of thousands 
of statistically generated 
pseudo-simulations 
combined with a weighting
that measures likelihood of 
observable characteristics 
of the simulation given the 
observations.



• Climate models represent a 
range of processes, some 
resolved at horizontal/vertical 
resolution, some un-resolved and 
so parameterised (e.g. cloud 
microphysics).

• In our 60km global model, there 
are hundreds of variables defined 
at 140,000 grid boxes on each of 
85 levels. 

• For the fraction of variables 
observed, none will be observed 
as a grid box average.

Climate modelling

Local 2.2km

Regional 
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Mesoscale convective system at 0000 UTC 14 June 2014.
(Clark et al, 2016, Meteorological Applications)

Qualitative comparisons with observations to 
build confidence in climate simulations

• In general, the radar data 
provide reliable information on 
the spatial patterns and 
temporal characteristics of 
rainfall.

• We have lower confidence in the 
absolute rainfall amounts 
especially for intense events and 
for hail events. Rain gauges are 
trusted more for rainfall intensity.

Harrison et al, 2000



• Biases are differences in the long-term 
averages of modelled and observed 
data. 

• Biases across different variables form 
the main basis for deciding whether or 
not a climate simulation is plausible. 
We also use historical trends.

• Here is an example using a gridded 
product of 1.5m temperature from 
EOBS.

Biases in long-term 
averages



Signal and noise
• Both real world and climate models have 

inherent variability due to chaotic nature of 
climate system. 

• Simulations not designed to reproduce real-
world noise, just the real-world signal

• There are other causes of error or 
uncertainty that we must account for:

• In real world there is also measurement 
error and representation uncertainty

• Models are imperfect and have 
structural differences caused by 
approximations and missing processes 
common to all our models

From LARGE ensemble of CESM projections run 
with multiple initial conditions (Kay et al 2015) 



• We need our constraints to reflect that 
noisy data or imprecise measurements 
or poorly modelled climate processes 
reduce our ability to discern good 
models from poor ones.

• Spatial or time averaging help to 
reduce noise.

• We need a method which captures 
that improving precision of 
observations or our climate models 
helps to provide better constraints.

Impact of uncertain data on 
climate model evaluation



𝐼𝐼 =
𝑂𝑂 −𝑀𝑀

𝑉𝑉𝑉𝑉𝑉𝑉 𝜖𝜖 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝜓𝜓 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝜙𝜙 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝛿𝛿

The Implausibility Metric, 𝐼𝐼
Observations Model output

Model noiseMeasurement
uncertainty Representation 

uncertainty including 
real-world noise

Implausibility 

Structural 
uncertainty (or 
“discrepancy”



An extensive set of aerosol 
observations, processed for 
the comparison:
 Varied global coverage: 

Spatially/temporally 
sparse 

 Data from large networks 
(e.g. AERONET)

 Data from ship and 
Aircraft campaigns

 9000+ observations

colour = monthly temporal coverage

Extensive aerosol observations to use for constraint

Johnson et al. (2020) 



 Spatial co-location
− Comparing point measurements with 

the model grid
− Where in the grid-box (central / edge) 

the observation lies

Components of representation uncertainty

 Temporal co-location
− Comparing campaign data (measured 

over a few hours/days) to monthly 
mean model output

 Inter-annual variability
− Campaigns are ‘one-off’ studies
− Comparing observations taken in a 

particular year to model output of a 
different year

Reddington et al, 
2016GASSP N50 (cm-3) at model 

resolution

GASSP observations

Model v’s Observations resolution

(Schutgens et al, 2016a)

(Schutgens et al, 2016b)
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Can use several metrics to constrain 
climate projections

• First of six metrics used 
in Sexton et al (2012) 
and UKCP09

• More metrics, less 
chance for rewarding a 
poor model

• Where possible use two 
data sets to represent 
observational 
uncertainty from 
measurements.



𝐼𝐼 =
𝑂𝑂 −𝑀𝑀
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The Implausibility Metric, 𝐼𝐼
Observations Model output

Model noiseMeasurement
uncertainty Representation 

uncertainty including 
real-world noise

Implausibility 

Structural 
uncertainty (or 
“discrepancy”

Filtering: if 𝐼𝐼 > specified threshold for certain 
fraction of observables, rule out simulation.

Weighting: weight is proportional to exp(- 𝐼𝐼 2)
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Effect of discrepancy on weighting
Discrepancy included                 excluded

Sexton et al 
2012

If we do not factor in 
uncertainties like 
measurement error, 
we end up with over-
confident projections



The effect of constraining 
projections

Unconstrained

Constrained

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Aerosol indirect effect forcing (W m-2) 

The 95% CI on the aerosol 
forcing reduces by 11%.



• Observations of multiple variables are used to either filter out implausible 
climate simulations or weight simulations according to goodness-of-fit

• Large errors in observations are one contributory factor that reduces our 
ability to use those observations to discern a good climate simulation 
from a relatively poor one.

• Our methods capture the benefit of improving precision of observations, 
(likely) leading to a more tightly constrained projection, more targeted 
adaptation.

Summary



• This implies need for wider range of variables, consistency across time and space, 
greater granularity, preferably with quantified observational errors...

The future of using observations for 
climate projections

• As well as biases in average climate, more emphasis on coupled Earth System 
and process evaluation. 

Kretschmer et al 2020Hurrell, James & NCAR Staff (Eds). 2020

Earth system processes          Variability in dynamic drivers          Connections
between drivers          



HadCRUT5 - A useful way to provide observational 
data and associated uncertainties

• HadCRUT5 (Morice et al 
202) combines sea surface 
temperature with near 
surface temperature over 
land.

• Consists of a 200-member 
ensemble of realisations 
sampling measurement and 
representation uncertainty 
plus other uncertainty 
information provided.



Backup slides



Identifying observations that do not compare well

It can be difficult to pin-point the cause:  Are the mis-matches due to representation errors?
Or, are they indicators of structural errors in the model?

We remove all observations if the lower 95% credible interval bound on I (across variants) is 
>1

Fig 4, Johnson et al. (2020) 
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Bayes Linear synthesis of multiple lines of 
evidence

• UKCP09 based on a Bayesian methodology of Goldstein and Rougier 2004
• Large multivariate problem 

• Model parameters (X)
• Historical and future model output (mh,mf)
• True climate (yh,yf)
• Observations (o)
• Model imperfections = discrepancy (d)

• Best input assumption - Model not perfect so there are processes in real system but not in our model 
that could alter model response by an uncertain amount. We assume that one choice of these values, x*,  is 
better than all others. Any point in parameter space has a probability of being x* so we need to sample 
parameter space

True climate Discrepancy

d=0 for perfect 
model

Model output of 
best choice of 
parameter values 
x*
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