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Abstract

In 1982, the authors produced a pseudo-random number generator
that has been widely used, but now has been shown to be inadequate
by today’s standards. In producing a revised generator, extensive use
has been made of a test package TestU01 for random number generators.
Using this, criteria have been devised for the revised generator— also other
high quality generators have been identified. Facilities have been devised
to allow the new generator to be used in a highly parallel environment,
which is likely to be a feature of many future applications.
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Version 0.96 of this paper, documentation and related software.

Randomness and chaos are anathema to the mathematician.
Music of the Primes: Marcus du Sautoy, 2003.

1 Introduction

In the early 1980s there seemed to be a need for a pseudo-random generator
that would have good statistical properties, could easily be implemented in any
programming language, would give the same results on any computer, and could
run on 16-bit computers without overflow problems.

With suitably chosen constants, multiplicative congruential generators were
known to do well, but with the 16-bit restriction, it would be difficult to find any
constants that would give good statistical properties, so we investigated whether
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it would be possible to combine more than one, relatively poor, generator in some
way that would give better properties than those of the individual components.

Having found two such generators, we tried combining them by adding their
results and taking the fractional part of the answer. Although still inadequate,
the results were sufficiently encouraging as to suggest that if a third compo-
nent were added, it would give what we were seeking. Algorithm AS 183,
[Hill and Wichmann(1982)] and [Wichmann(1982)] resulted.

It has had a ‘good innings’ but its cycle length of about 7×1012 is now consid-
ered inadequate for some purposes, and it has been reported [McCullough and Wilson(2005)]
as having failed some tests at a probability level of less than 10−15. Old gen., page 14

Computing developments over the last quarter of a century now make a
better version both possible and desirable. In particular, there does not now
seem to be a need for the 16-bit restriction, as 32-bit availability is almost
universal. In view of the widespread use that the original version has enjoyed,
it seems wise to retain the same underlying plan, and to regard the passing of
a suitable barrage of empirical tests as adequate justification. There are many
different constants that could have been put into the plan with success and we
make no claim that those we recommend are necessarily better than others that
might have been selected, but only that they have survived stringent testing.

2 Testing a generator

In 1982, the work required to test the generator was very much larger than
that required to write it. Fortunately, there are now publicly available test
suites for random number generators, and that substantially reduces the effort
involved. Moreover, the choice of statistical tests has been made independently
of ourselves.

Two such test suites are: DIEHARD, [Marsaglia(2000)] and TestU01, [L’Ecuyer(2005)].
[McCullough and Wilson(2005)] report that our old generator passed DIEHARD,
but failed the more recent tests in TestU01. The TestU01 package is very com-
prehensive with many individual tests but also three batteries of test: Small
Crush, Crush, and Big Crush. Our aim with any generator is to ‘pass’ the Big
Crush tests. A review of these tests, [McCullough(2006)], was particularly help-
ful. Big Crush uses 238 random values and can take over 24 hours to execute, Testing,

page 15depending mainly upon the speed of the generator being tested.
Big Crush reports P-values for all its tests, and signals those that come

outside the [0.01..0.99] range. As it produces 124 P-values altogether, 1 or 2
would be expected to fall outside this range even for perfect randomness, though Big Crush,

page 15it must be remembered that not all the tests will be independent. In addition,
TestU01 indicates catastrophic failures (defined as outside the [10−15..1−10−15]
range) — these should clearly not arise with any high quality generator

The Big Crush test should be run at least twice, with different seeds, as an
insurance against an exceptional single run. Big Crush does not specify a ‘pass
criterion’ as such. It is not sufficient merely to have few results outside the
[0.01..0.99] range. For a reasonable degree of randomness, the P-values should
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themselves be more-or-less uniformly distributed between 0 and 1. So to judge
a new generator, we actually use three requirements which must all be satisfied:

1. There must be no catastrophic failure (P value outside the [10−15..1 − 10−15]
range);

2. For any component test with a value outside the [0.01..0.99] range, we
repeat the test a further 4 times. Of these further four runs, we require
not more than one to indicate a value outside the above range. This
criterion was suggested by Richard Simard, one of the Big Crush authors;

3. For each run of Big Crush we consider the distribution of the P-values
by calculating Greenwood’s statistic ([Greenwood(1946)]) and finding its
approximate tail-area probability using the technique given in [Hill(1979)].
We require the two-tailed value to come within the [0.01..0.99] range.
Preferably it should come within the [0.1..0.9] range, but even for perfect
randomness, such limits would be violated on 20% of occasions, so it would
be unreasonable to insist upon it.

We are now in a position to know when we have an acceptable generator
(which need not be our own).

3 Constructing a revised generator

The obvious way to proceed was simply to enhance the existing generator by
using three components with suitable constants for 32-bit arithmetic rather than
the 16-bit arithmetic we used in 1982. Unfortunately, such a generator failed
according to the criteria above. Firstly, a multinomial distribution test failed Test 3-cycle,

page 15with Big Crush with a P-value outside the [0.01..0.99] range. When repeated 4
times, the same test failed a further three times. Secondly the observed values of
the Greenwood statistic gave P=0.076 on a first test and P=0.050 on a second,
not actually failing but too low for comfort. In consequence, we decided to add
a further cycle to make our new generator a 4-cycle system.

Using the same design method, we need four primes p1, p2, p3 and p4, such
that pi < 231. In order to ensure that the generator has the maximum period, we
select the pi−1 to have no common factor other than 2. It is straightforward to
write a program to find suitable primes, the candidate ones being: 2147483579,
2147483543, 2147483423 and 2147483123. Primes,

page 14The constituent linear congruence generators have no additive constant, but
we need to choose multipliers with a range of values up to

√
pi − 1 such that

each value is a primitive root of pi − 1. Suitable values can again be found with
the aid of a short program. The candidate multipliers are: 11600, 47003, 23000
and 33000 respectively. Multipliers,

page 14Combining these four generators in a simple way would then require 64-bit
integer arithmetic, which is as follows:
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ix := 11 600 × ix mod 2147483579;
iy := 47 003 × iy mod 2147483543;
iz := 23 000 × iz mod 2147483423;
it := 33 000 × it mod 2147483123;
W := ix/2 147 483 579.0 + iy/2 147 483 543.0

+iz/2 147 483 423.0 + it/2 147 483 123.0;
return W − ⌊W ⌋;

Note that the four constituent generators are combined by taking each as a
fraction of its prime, summing them and taking the fractional part of the result.

We avoid 64-bit arithmetic in the same way as with the old generator. For the
first constituent, we have 2147483579/11600 = 185127.89 . . . and 2147483579 −
185127 × 11600 = 10379. Hence the resulting computation becomes:

ix := 11600 × (ix mod 185127) − 10379 × (ix ÷ 185127)

However, if this result is negative, then 2147483579 must be added.
The algorithm in the variant suitable for 32-bit arithmetic is: Logic, page 14

ix := 11 600 × (ix mod 185 127) − 10 379 × (ix ÷ 185 127);
iy := 47 003 × (iy mod 45 688) − 10 479 × (iy ÷ 45 688);
iz := 23 000 × (iz mod 93 368) − 19 423 × (iz ÷ 93 368);
it := 33 000 × (it mod 65 075) − 8 123 × (it ÷ 65 075);
if ix < 0 then

ix := ix + 2 147 483 579;
if iy < 0 then

iy := iy + 2 147 483 543;
if iz < 0 then

iz := iz + 2 147 483 423;
if it < 0 then

it := it + 2 147 483 123;
W := ix/2 147 483 579.0 + iy/2 147 483 543.0

+iz/2 147 483 423.0 + it/2 147 483 123.0;
return W − ⌊W ⌋;

This generator passed the Big Crush test according to our criteria. Using
two runs, with different seeds, there was only one value outside the [0.01..0.99]
range, and repeating the particular test four more times, the value was within
the range each time. The Greenwood statistic gave P=0.22 on the first occasion
and P=0.52 on the second, which can be regarded as highly satisfactory.

4 Some properties

The four pi − 1 are:

2147483579 − 1 = 2 × 1073741789,
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2147483543 − 1 = 2 × 3137 × 342283,

2147483423 − 1 = 2 × 7 × 557 × 275389,

2147483123 − 1 = 2 × 1073741561.

Factors,
page 16This implies that the period of the generator is:

2 × 1073741789 × 3137 × 342283 × 7 × 557 × 275389 × 1073741561
= 2658454842761624389388266709412111698
≈ 2.65 × 1036

≈ 2121

The operations ×mi mod pi for each of the four cycles have an inverse of the
same form. To find the inverse of m1, we compute the continued fraction for
m1/p1: Inverse,

page 16
11600

2147483579
= 1/(185127 + 1/(1 + 1/(8 + 1/(1 + 1/(1 +

1

610
)))))

Removing the 1

610
and multiplying up we get

11600

2147483579
≈

19

3517430

or
19 × 2147483579 − 1 = 11600 × 3517430

Hence the inverse of 11600 is 2147483579 − 3517430 = 2143966149. The
other three inverses are 197144682, 981586662 and 1289335852.

Using these four inverses as multipliers, a new generator could be constructed
which would have essentially the same statistical properties as the original one.

For our old generator, [Zeisel(1986)] pointed out that the three cycles could
be combined to re-write the generator in the form:

Xn+1 = 16555425264690 × Xn mod 27817185604309

Similarly, the new generator has a single-cycle version in which the modulus is
the product of the four primes. To find the multiplier a we need to solve the
four equations: a = ai mod pi for the four individual multipliers 11600, 47003,
23000 and 33000 and the four primes 2147483579, 2147483543, 2147483423,
and 2147483123. These equations can be solved using the Chinese Remainder
Theorem, as pointed out by Zeisel. Producing an explicit solution would be of Single LCG,

page 17no real benefit since it is impractical to compute the random numbers this way.

McLeod has pointed out that the precision of the floating point arithmetic
influences the values that can be produced ([McLeod(1985)]). His analysis was
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concerned with obtaining 0.0 with a computer with only 23 mantissa bits. It
is doubtful that a precision as low as this should be used for serious computa-
tion, but the analysis is indicative in other ways. The old generator produced
essentially 48 ‘bits’ of randomness by combining three 16-bit generators. If the FLP, page 17
old generator was used to produce IEEE double length values which have 53
bits in the mantissa, then the three integers in the seeds could be computed
from the result. This implies that the next value can be computed! For this
reason, our generator cannot be regarded as cryptographically strong. With the
new 4-cycle generator, the number of random bits is roughly 121 implying that
no problems should arise with IEEE double length arithmetic — although, as
McLeod noted, the value 0.0 can be produced.

Timings have been made of this generator on an Apple 1.6 GHz Power PC
G5 as follows: Timing,

page 18
Generator Millions of calls per second
Ada GNAT 1.31

Old generator, 32-bit 1.91
Old generator, 16-bit 1.76

3-cycle generator, 64-bit 0.81
3-cycle generator, 32-bit 1.93
4-cycle generator, 64-bit 0.65
4-cycle generator, 32-bit 1.57

C coding of new 32-bit version 3.97

The C generator times are not strictly comparable with the others as the
timing methods were different — it seems that the C generator is about 20%
faster than the Ada ones. The 16-bit old generator and the 32-bit new 3-cycle
one are roughly comparable, the only difference being the size of the operands.
The timing shows that even when 64-bit integer arithmetic is available, the 32-
bit version can be significantly faster. Of course, our statistical testing implies
that only the 4-cycle generators are acceptable — with the 32-bit one being the
fastest (at least in this case).

In 1982, the old generator took 0.85 ms on the PDP11 of its day [Hill and Wichmann(1982)].
This implies that the old generator would repeat after 187 years. The new gen-
erator, based upon the timings above, would repeat in about 8,000 times the
age of the earth! In other words, the increase in the period of the new generator
seems to be adequate to cater for the likely increase in computer speeds over
the next 20 years. (In contrast, the old generator on an Apple G5 machine can
execute the entire sequence in 49 days, which shows that the period is indeed
inadequate.)

5 A generator package

Programming languages and implementations typically provide a random num-
ber facility. In the case of the C language ([C(1999)]), this provides integers C, page 18
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only in the 0..RAND MAX range, and with a means of resetting the seed. Since
the integers have type int, the range need only be 16 bits.

In contrast, Ada 95 ([Ada(1995)]) provides two comprehensive packages for
random numbers. These are very similar, one being for type Float and the
other generic for any discrete type. In both cases, several sequences can be
used, and the state of any generator can be saved or restored. For handling the Ada 95,

page 18setting of seeds from external information, the state can be saved or restored
to/from a string. The standard makes the observation ‘No one algorithm for
random number generation is best for all applications’. Two problems with the
existing Ada facilities are worth noting: random numbers of type Long Float
are not available, and the required period for the generator when the numerics
annex is implemented is only 231 − 2.

The Ada packages can provide a random number by means of a function.
However, an Ada function cannot change its parameter, which implies that
the side-effect that the function must perform to advance the cycle must be
undertaken indirectly. For those concerned with program proof, typically for
highly critical situations, such behaviour is not allowed. Hence the SPARK Ada
subset ([Barnes(2002)]) could not be used to write a random number generator
in the functional style. These considerations led to the formulation in Ada
different from that in the standard library. Other changes from the Ada 95
standard specification is to produce a result of type Long Float and to have the
Initiator value to the Reset procedure to be positive. The reason for the latter
change is for the initialization to align to the proposals for handling multiple
sequences.

Abstractly, one would like to hide the state, which in Ada is achieved by
means of a private type. However, one does need to set the seeds and hence
some form of visibility is needed, which is undertaken by means of conversion Abstraction,

page 19to a string. The ‘size’ of the state is given by the length of the string, which for
the generator here is given by the four integers in decimal.

Both Ada and Java provide a simple mechanism to set the seeds. The Ada
GNAT implementation uses a 32-bit integer value to set the seed, although this
is not adequate to produce all values of the state (the period is about 249).
(The string facility can be used to cover all values.) With Java, the situation
is reversed with only 48 of the 64 bits of the value provided being effective in
setting the seed. Note that changing the actual algorithm for random numbers
could easily alter the relationship between the seed size and the state size.

In Ada 95 and Java it would be possible to undertake an implicit initializa-
tion, perhaps using the clock, on the declaration of a generator. We have not
done this with the Ada 95 implementation, since we will show later that when
many sequences are required, additional care is required with the initialization.

Java shares with Ada the need to provide random numbers in the presence
of tasking which implies that the state data must be separated from the code
and be able to be placed within the data associated with a task. Random is a
constructor class, while the methods are of the form next.... In fact, the Java
class provides very extensive facilities, see [Java(2002)]. Here, the one generator
has methods for providing uniform random values of all the major Java types,
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and well as a Gaussian for double. (There is another random facility in the
class Math which we do not consider here.)

One property of Java is that of strict portability. For instance, the sin
function must produce the nearest approximation to the mathematical result.
For the random function, this implies that when initialized with a specific value,
the sequence is determined. Hence a strict implementation cannot change the
algorithm for the sequence generation — this is unfortunate since the simple
linear congruence generator used could otherwise be replaced by a generator Java, page 20
passing Big Crush.

Producing random numbers is not quite the same as producing repeat-
able, random-like values in a sequence. Strict repeatability, as in Java, is
useful in applying a technique of generating random test cases for software
[Wichmann(2000)]. Each test, no matter how complex when generated, can be
recorded merely by the seeds. Retesting can be undertaken by regeneration and
regression testing by regenerating just those tests which failed.

6 Generating many sequences

Consider the problem of undertaking a Monte Carlo simulation on a highly
parallel system with a hundred or more processors. One needs hundreds of
different sequences which should not overlap at all.

Given an existing long period generator, even with a randomly chosen seed,
there is a small risk that two sequences will overlap. What is the best approach
to take under such circumstances? Should one accept the risk, which would
certainly be small with the generator presented here?

In fact, for the generator proposed here, the solution appears to be quite
simple. We assume each parallel process is given a unique number n. For each
simulation, fixed values x, y, z are taken for the first three seeds of the generator.
The fourth seed is set to n. For any sequence to overlap, the first three integers
must be x, y and z, but this can only arise after about 290 calls of the generator.
In other words, we are splitting the generator by means of starting from fixed
points on the first three cycles.

It is not always possible to obtain the same effect with the other generators
which pass the Big Crush tests. One needs a means of splitting the entire
sequence into subsequences which are further apart than the likely number of
calls made to the generator. Many seq.,

page 20Unfortunately, our simple solution above has a flaw. Assuming we have
100 parallel processes, when they start execution, the first random number
produced will be very similar! We need therefore to devise a method such that Poor, page 20
the sequence of random numbers given by the first number from each of our
processes themselves pass specific tests for randomness. This property may not
be needed by some applications but could be important for others.
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6.1 A list of sequences

The generation of multiple sequences is a special case of a more general problem
of producing a matrix of random numbers:

s11 s12 s13 . . .
s21 s22 s23 . . .
s31 s32 s33 . . .
. . .
. . .
. . .

Our usual sequence of random numbers is represented by the rows. Of course,
the rows are much longer than any likely use of the random values.

The solution given above was to set sn1 to (x, y, z, n), which we know is not
adequate in some circumstances. It is inadequate because the columns do not
give a statistically random sequence.

In 2001, a researcher in Spain, Pedro Gimeno, reported a problem to Knuth
which showed the Knuth generator as giving unacceptable results. Using the
notation above, the issue was that the sequence sn1 was not random. Does this
matter? This is exactly the problem of producing a matrix of random values so
that the columns as well as the rows are random.

If one requires a number of independent sequences, each one of which is
random (say, passing Big Crush), then the proposal above is fine. Here, only
the rows are relevant. However, if the application only uses a few random values
from each sequence, and the ordering of the sequences is important, then the
problem that was reported to Knuth may be critical.

Can we therefore adapt the generator to produce a list of sequences? The
properties we require is that each row and column should be statistically sound
and that none of these should overlap.

Using our four primes pi, and the existing generator which gives the rows
above, how can we produce the columns? The answer is simple. For two of the Columns,

page 20primes, say p1 and p2, we produce another two multipliers distinct from those
used in the original generator (and their inverses). The method of obtaining
the next row is by applying the multiplier to the first two values while leaving
the other two fixed. (The operations of moving along the row or going down
the column are commutative.) By using two new multipliers we ensure that the
column sequences pass at least Small Crush, and, of course, each individual row
passes Big Crush as before.

The two new multipliers are 46340 and 22000 to give the cycles:

ix := 46340 × ix mod 2147483579

and
iy := 22000 × iy mod 2147483543

Taking the seeds for s11 in the matrix above as ix, iy, iz and it, we compute
the seeds corresponding to s21 by:
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ix := 46 340 × (ix mod 46 341) − 41 639 × (ix ÷ 46 341);
iy := 22 000 × (iy mod 97 612) − 19 543 × (iy ÷ 97 612);
if ix < 0 then

ix := ix + 2 147 483 579;
if iy < 0 then

iy := iy + 2 147 483 543;

where iz and it are unchanged. Repeating this operation we can compute the
seeds for s31, and so on.

Keeping iz and it fixed ensures that no overlap occurs for over 2.3 × 1018

values at the very minimum.
Since generators running in parallel on different processors, using this method, Correlation,

page 22will then have two of the four components in common, it might seem likely that
they would suffer from greater correlation between them than if all four were
varying separately on each. In the event, this is not so. Taking 10 cases of 10000
pairs of numbers from non-overlapping parts of the sequence with all four com-
ponents varying separately, 95% confidence limits for the mean correlation were
−0.044 to 0.011. Doing the same with only two components varying separately
and the other two varying together, using the technique for deriving seeds given
above, 95% limits were −0.003 to 0.010. These both include zero, which is satis-
fying, and the latter limits are marginally narrower than the former ones. We do
not for one moment suggest that the latter would actually give less correlation
in general, but there is certainly no evidence here of it being greater.

7 Conclusions

We know of several generators which pass the Big Crush battery of statistical
tests. We think that only such generators can be recommended for general use. Table, page 21
These can be compared for basic properties (fastest first):

Name Period Lines Size of state Relative
of code (bytes) timing

ISAAC ≥ 240 97 1024 1.0
AES ?? 85 16 2.1

Mersenne twister [Matsumoto(1998)] 219937 − 1 48 2,500 2.3
MRG32k3a [L’Ecuyer(1999)] ≈ 2191 31 48 2.7

Knuth, TAOCP [Knuth(2002)] ≈ 2129 90 404 4.9
CLCG4 [L’Ecuyer(1997)] ≈ 2121 34 16 9.2

This paper — 4-cycle ≈ 2120 26 16 10.0
MRG63k3a [L’Ecuyer(1999)] ≈ 2377 40 48 14.3

The last three columns should only be taken as an indication of the basic
characteristics since the generators operate in rather different ways which makes
direct comparison problematic.
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Our combined 4-cycle generator can be recommended for the following rea-
sons:

1. Our generator is easy to code in any programming language. It does not
depend upon bit manipulation used by several of the other generators.

2. The state is small and easy to handle.

3. It is possible to use the generator to provide multiple sequences needed
for highly parallel applications.

We would not necessarily wish to advocate our generator, but rather any
generator which satisfies our criteria for passing Big Crush and has a means of
handling highly parallel systems.
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A Implementation notes

The marginal text in the main paper refers to the notes here. These notes
give additional information not appropriate to a published paper, but would be
useful for those wanting to use the new generator or to understand it in greater
detail. Many of these notes refer to files available with the longer form of the
paper from the NPL web site.

Those wishing to code the generator in a language could start from an Ada
95 version (the files Version6.ads and Version6.adb) or from ‘C’ (the files
Version6.h and Version6.c). Please read these notes before coding. Some
notes on implementing this generator appear in Appendix C.

A.1 Introduction

The old generator was tested by McCullough [McCullough(2006)] and we in-
clude here the test script and the results for completeness. The formulation
can be undertaken in two ways using the facilities inside TestU01 without actu-
ally recoding the generator. The first formulation uses a three-cycle generator Old gen.,
specification, see the code in wich1.c and the output wich1.out. The sec-
ond formulation uses a method of composing three generators, see the code in
wich2.c and the output wich2.out. Both fail catastrophically the Birthday
Spacings test, the results being essentially identical.

A.2 Constructing a revised generator

The primes were calculated with the aid of a short Ada 95 program. The
program source text is the file find.adb and the output produced, the file
find.out. The output file has been annotated with suitable primes based upon Primes
the factorization of p − 1.

The multipliers were calculated using the program mult.adb and details of
its use are recorded in the file mult.out. The output is collected from many Multipliers
runs of the program and annotated to give the suitable values. The logic used
to avoid overflow of 32-bits requires that the multipliers are less than the square
root of the prime. (An alternative logic is possible, but we have retained the
logic used in the old generator.)

When this paper was refereed, it was pointed out (correctly) that the Spec-
tral Test should have been applied to check the choice of the primes and mul-
tipliers. See Section 3.3.4 of [Knuth(2002)] for details of this. We did not have
software to undertake this test and we restricted ourselves to the testing re-
ported here. However, since we know that the 3-cycle version was very near to
passing Big Crush, we feel confident that the 4-cycle version is indeed adequate.
The generator [L’Ecuyer(1997)] is very similar to ours and has been chosen using
the Spectral Test and can usefully be reviewed by those interested.
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The logic is identical to that of the original generator — the changes being
in the choice of the constants and the use of four cycles rather than three. Logic

The logic is not given in a specific language since that seems to be poten-
tially confusing when the reader may not be familiar with the language used.
Implementations in Ada 95 and C are provided.

It is important to note that although the basic logic given here may be
adequate in some contexts, a complete random package should be implemented,
again available in Ada 95 and C.

Note that the final value returned is the fractional part of W and hence is
never equal to 1.0. (However, producing 1.0 should not necessarily matter —
code should not rely upon that.)

Further notes appear in section C.

A.3 Testing the generator

Since we knew that the old generator passed DIEHARD but failed TestU01,
it seemed that the right thing to do was to aim at passing TestU01 with the
new generator. It also seemed that TestU01 was more comprehensive than
DIEHARD, indeed TestU01 has been described as DIEHARD with steroids! Testing
TestU01 has been revised and updated over the years, but this testing refers to
version 6.0 dated 14th January 2005.

At first, BW could not get TestU01 to work on his Apple G5 which runs BSD
Unix. Fortunately, Richard Simard managed to solve this problem even without
his institution having an Apple. Bruce McCullough’s review [McCullough(2006)]
was useful in indicating the range of tests that could be undertaken with TestU01,
although it was for an earlier version than that used here.

It is important to note that TestU01 requires that a generator to be tested
be coded in ‘C’ in a specific way — for instance, the function must produce a
double. For this generator, it is available with two different starting seeds as
Version6a.c and Version6b.c. The new generator was coded as an ‘external’
generator, rather than being constructed from facilities internal to TestU01.
The initial value of the seeds is set directly into the code. For the timing tests
to be meaningful, the external generator must be compiled with the option -O2.

TestU01 has a built-in system for combining generators which can be used to
construct our old generator from the three cycles. It was not possible to repeat
this with the new generator since each individual cycle uses 64-bit arithmetic
when coded as a simple multiply and add (no add in our case).

The 3-cycle generator was not quite adequate. The results from Version4a.c

are in the file biga.out (and similarly for Version4b). Since some results Test 3-cycle
were outside the [0.01..0.99] range, further testing was done via the program
extra1.c, the results of which are in extra1.out (which shows the failure to
pass the criteria we have set).

The full results are in file big6a.out. The full results from Version6b are
in big6b.out, and two summaries are: Big Crush
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============== Summary results of BigCrush ==============

Generator: Generator Version6a

Number of tests: 90

Total CPU time: 25:52:44.55

The following tests gave p-values outside [0.01, 0.99]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

39 RandomWalk1 C (L = 1000) 5.5e-3

----------------------------------------------

All other tests were passed

============== Summary results of BigCrush ==============

Generator: Generator Version6b

Number of tests: 90

Total CPU time: 23:07:59.61

The following tests gave p-values outside [0.01, 0.99]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

5 MultinomialBitsOver 0.9959

13 BirthdaySpacings (t = 8) 0.9972

----------------------------------------------

All other tests were passed

To pass our criteria, we need to repeat the three tests to ensure that the po-
tential problem does not arise too often. These extra tests are the files extra2.c,
extra4.c and extra5.c, with the results in extra2.out, extra4.out and
extra5.out.

As expected, the individual cycles of the generator perform poorly as free-
standing generators — they fail Small Crush catastrophically. The six cycles
used — four in the main generator and two for the column generator and tested
in the program four.c, the cycles in cycles.c and the results in cycles.out.

A.4 Some properties

See the file find.out which is annotated with the factorization. Factors

It is a straightforward but tedious calculation to find the inverses this way.
The Unix tool bc and a Python program was used. The relationship between
continued fractions and Euclid’s algorithm which underlies this calculation is
explained in [Knuth(2002)], section 4.5.3. Given the inverse, it is simple to Inverse
check it!

Express 23000 / 2147483423 as a continued fraction

1/(93368 + 1/(1 + 1/(5 + 1/(2 + 1/(3 + 1/(14 + 1/(3 + 1/(5 +
1

2
))))))))
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Removing the 1

2
and multiplying up we get:

23000

2147483423
≈

10513

981586662

2147483423 × 10513 + 1 = 23000 × 981586662

Hence the inverse is: 981586662.
Express 33000 / 2147483123 as a continued fraction

1/(65075 + 1/(4 + 1/(15 + 1/(1 + 1/(100 + 1/(1 + 1/(1 +
1

2
)))))))

Removing the 1

2
and multiplying up we get:

33000

2147483123
≈

13187

858147271

33000 × 858147271 + 1 = 2147483123 × 13187

Hence the inverse of 33000 is 2147483123 − 858147271 = 1289335852

Rather hard to solve the equations, although an explicit solution can be
written down as: Single LCG

a = a1×(p2×p3×p4)
p1−1

+a2×(p1×p3×p4)
p2−1

+a3×(p1×p2×p4)
p3−1

+a4×(p1×p2×p3)
p4−1

mod p1×p2×p3×p4

The above formula has been programmed in Python (single.py) and gives:

Xn+1 = 12033300995860634611814649701308903762×Xn mod 21267638781707063560975648195455661513

The three-cycle generator gives:

Xn+1 = 3957351460688778375479726849×Xn mod 9903518474220420479167438931

Our generator does not produce the bits directly from the integer calculation
and hence relies on a floating point calculation to deliver a value in the [0.0..1.0]
range. Hence the precision of the floating point is vital here. In McLeod’s case,
the floating point is less precise than the integer calculation. In this case, the FLP
final calculation can produce 0.0 even though algebraically it is not zero. (Note
that the coding should ensure that the value 1.0 is not obtained, although this
is not essential for most uses of the generator.)

When the floating point is more precise than the integer calculation, then
the integer values can be recovered from the floating point values. (Floating
point will be more precise if the old generator produces a IEEE double length
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result.) This might mean trying a few values, since the integer part of the float-
ing point value is not known. Assuming this can be done, then the next value in
the sequence can be found. This implies that the algorithm is cryptographically
weak and would not be appropriate for some applications. There are many pa-
pers about randomness with cryptographic strength, but this is not the concern
here.

The table of the timing was produced from the Ada program test rand.adb,
for the first five generators written in Ada, and by the ‘C’ program main.c.
The ‘C’ program uses the 3-cycle and 4-cycle versions of our generator for
that language which is in the files Version4.h, Version4.c and Version6.h, Timing
Version6.c.

The GNAT generator is from L. Blum, M. Blum, and M. Shub, SIAM Jour-
nal of Computing, Vol 15. No 2, May 1986. No details of the quality of this
generator could be located.

The ‘C’ clock measures CPU usage, while the Ada program uses elapsed
time, which seems to account for most of the difference.

A 64-bit ‘C’ version could be produced, but it hardly seems worthwhile —
it is clear the 32-bit version is best, at least on current machines.

A.5 A generator package

The C facility is so poor one wonders why it is included. This is partly due to
the size of int. It is surely a trap for the unwary. C

Although Ada 95 has two comprehensive packages, it is not without prob-
lems. Ada 95 as a standard is really in two parts: the main language and Ada 95
then some annexes which are optional for an implementation. Here, the vital
one is the Numerics Annex, since additional requirements are placed upon an
implementation when this annex is implemented.

The Numerics Annex places quite tight requirements on the precision of the
mathematical functions which clearly implies that high quality is expected. Not
so with the random number package requirements in two major ways:

1. The period only need be 231 − 2.

2. The basic floating point results only need have 6 digits of precision.

Here, we have taken the recommendation that the period of a quality gen-
erator should be at least 260, see [L’Ecuyer(1994)]. It has been stated that
requiring a longer period would lead to an untestable requirement, but this is
inconsistent with having any accuracy requirements on numeric operations.

The second reason above is just as important. Few numerical calculations
these days are done to only 6 digits for good reasons. The TestU01 package
requires results which are double, ie, 11 digits. Hence an Ada package cannot
be tested with TestU01 (or rather, it would always fail).

The Ada standard (A.5.2 (44)) makes are interesting claim: No one algo-
rithm for random number generation is best for all applications. It could be
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argued that the generator proposed here is at least good for all applications.
Reasons for not being the best are:

1. Even among those that pass Big Crush, it is not the fastest.

2. With reduced statistical quality, a much faster generator would be possi-
ble.

A random number package should have a structure reflecting the underlying
requirements rather than the specifics of the implementation. The language
also affects the structure. The restrictions on Ada functions make for some Abstraction
difficulties, unless one uses procedures instead. The Ada 95 package uses two
types for the generator, while the formulation here uses just one.

Our package specification is designed to give a specification suitable for
any random number generator (although the value of Image Width might need
changing). However, in this paper, we are actually concerned with the internals
and properties of the generator given in the private type Generator and in the
package body (not listed here).

The version of Reset which has an integer parameter uses the ‘column gener-
ator’ technique to ensure that when Reset is called with values from 1 upwards,
the first random number produced has the properties noted above, ie, passes
Small Crush.

package Version6 is

type Generator is private;

subtype Uniformly Distributed is Long Float range 0.0 .. 1.0;

procedure Random (Gen: in out Generator; Value: out Uniformly Distributed);

-- Value gives the next random number, Gen is advanced

procedure Reset (Gen : out Generator;

Initiator : in Positive);

-- uses Initiator to reset Gen

procedure Reset(Gen : out Generator);

-- uses the clock to reset Gen

Image Width : constant := 44;

subtype String State is String(1..Image Width);

-- The character encoding of the state

function Image (Gen : in Generator) return String State;

-- Gives the character encoding of the generator.

function Value (Coded State: String State) return Generator;

-- Gives the value of the Generator corresponding to the string

function Next Sequence(Gen : in Generator) return Generator;

-- Produces a new starting value for a generator for which a sequence
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-- of starting values produces a random sequence.

private

type Generator is record

ix, iy, iz, it: Integer := 1;

end record;

end Version6;

A problem to be faced with an abstraction is the relative size of the parameter
used to set the seeds and the size of the state-space. The other two generators
compared in the conclusions have a very much larger state-space.

The Java implementation uses a simple (48-bit) linear congruence generator.
The documentation refers to Knuth, but it does not use the lagged Fibonacci
generator recommend by Knuth which passed Big Crush (see 10).

Python uses the old Hill/Wichmann generator, but have recently added the
Mersenne Twister as well [Matsumoto(1998)].

A.6 Generating many sequences

The Mersenne twister and Knuth’s generator have both been modified so that
when using the values 1..n to initialize the generators, a random sequence is ob-
tained. However, it is unclear how many calls can be made before the sequences Many seq.
could overlap. Of course, since both have long periods, the probability of an
overlap is surely small.

The ‘random’ sequence of n numbers produced by using the seeds (x, y, z, n)
are so poor that the TestU01 system loops! However, this method of generat-
ing multiple sequences could still be recommended when there is no ordering
between the sequences.

The additional multipliers also appear in the file mult.out as before. The Columns
code for producing another sequence in this manner can be seen from the func-
tion Next Sequence in the package body file Version4.adb. This is tested us-
ing Small Crush in the files: Version4k.c source text of the column generator,
smallk.c test program to all the Small Crush battery of tests, and smallk.out

for the results of the tests. Note that the column generator advances ix and
iy column-wise and then repeats the of the main generator. The result passes
Small Crush.

The coding of the version of Reset which uses an integer parameter follows
the column method. The values of iz and it are fixed, and the values of ix and
iy use the column logic. The number of changes made to ix and iy is equal to
the value of the integer parameter.

The generator [L’Ecuyer(1997)] is very similar to ours but does not have the
equivalant of the column generator and hence, as implemented, is not suitable
for highly parallel applications.
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The full implementation is to be found in the package body in file Version6.adb.

A.7 Conclusions

The period of the Knuth generator does not seem to be in [Knuth(2002)], but
was found elsewhere.

The lines of code have been worked out by trying to lay out the code to be
the same ‘standard’ as C. Blank and comment lines have been ignored. For Table
Knuth, the lines in the file without the main (test) program — the comment
and blank lines being off-set by loops and conditionals on one line.

The timing has been taken from the program time4.c which produced the
output time4.out. The code for the other generators are available within the
TestU01 system.

Apart from our generator presented here, the other generators that do not
perform bit manipulation operations are CLCG4, MRG32k3a and MRG63k3a
— the last two being recommended by Pierre L’Ecuyer.

B List of files

These are in two tables, both in alphabetical order. Table 1 contains the main
files associated with the new generator (and its testing). Table 2 contains other
files, such as those concerned with the 3-cycle generator which was inadequate.
The notation x.ads/adb refers to two files x.ads and x.adb (the specification
and body of the Ada package x). Similarly, the notation extra2.c/out refers to
a program extra2.c (this one in C) and the output it produces extra2.out.

All the text files are in Unix line format.

C Implementing the generator in other languages

It would be best to implement a package or module corresponding to the Ada 95
package Version6.ads and Version6.adb. If you are more familiar with ‘C’,
you could start from the corresponding code in version6.h and version6.c.
Having coded this up, it would be best to write a simple test program like
test rand.adb (or main.c) in which the new package is called. Some results
can be checked by eye. Also a timing comparison is made with any facility
built-into the language being used. (The ‘C’ test program does not attempt to
time the random functions in the language due to their poor specification.)

The package specification for the Ada 95 version is the file version6.ads.
The corresponding implementation is the file Version6.adb.

The test program test rand.adb includes several different generators, in- Test rand
cluding the one defined in the Ada standard. Versions 1 and 2 refer to the old
generator and 3 and 4 to the 3-cycle one which was found to be inadequate.
The one recommended is version 6 due to the speed and absence of 64-bit in-
teger arithmetic on many current machines/languages. It may be the case that
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Name Reference Description

big6.c Page 15 C code for Big Crush — seed b (seed a is similar)

big6a.out Page 15 TestU01 results from Big Crush — seed a

big6b.out Page 15 TestU01 results from Big Crush — seed b

ctest.out Page 21 Output from test of C implementation

cycles.c/out Page 16 Test for single-cycle generators

extra2.c/out Page 15 New 4-cycle generator: extra test 2

extra4.c/out Page 15 New 4-cycle generator: extra test 4

extra5.c/out Page 15 New 4-cycle generator: extra test 5

find.adb/out Page 14
Program to find primes and result (with factor-
ization of (p − 1) )

four.c Page 16 Test for single-cycle generators—main program

LICENCE.PDF — Software End-User Licence Agreement

long.pdf — This paper

main.c Page 21 C test program for implementation

mult.adb/out Page 14 Program to find suitable multipliers and results

random6.pas/out Page 10
Program to compute correlation between columns

short.pdf — Submitted for publication

single.py Page 17
Python program to compute the single LCG val-
ues for some combined generators

smallk.c/out Page 20 Code to test column generator with Small Crush

test rand.adb/out Page 21 Ada test program for completed generator

time4.c/out Page 21 Code to time several generators being compared

version6.ads/adb Page 21 New 4-cycle generator, 32-bit version

version6a.c Page 15 C code new generator for testing — seed a

version6b.c Page 15 C code new generator for testing — seed b

version6c.c Page 15 C code column generator for testing

version6.h Page 21 C header file for implementation

version6.c Page 21 C implementation

wich1.c/out Page 14 Code using TestU01 to test the old generator (1)

wich2.c/out Page 14 Code using TestU01 to test the old generator (2)

Table 1: Main files
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Name Reference Description

biga.out Page 15
New 3-cycle generator: Big Crush output —
seed a

bigb.out Page 15
New 3-cycle generator: Big Crush output —
seed b

extra1.c Page 15
New 3-cycle generator: extra test (which
failed)

extra1.out Page 15 New 3-cycle generator: Failure of extra test

version1.ads/adb Page 21
ALGORITHM AS 183 APPL. STATIST.
(1982) VOL.31, NO.2, 32-bit version

version2.ads/adb Page 21
ALGORITHM AS 183 APPL. STATIST.
(1982) VOL.31, NO.2, 16-bit version

version3.ads/adb Page 21 New 3-cycle generator, 64-bit version

version4.ads/adb Page 21 New 3-cycle generator, 32-bit version

version4a.c Page 15
New 3-cycle generator, 32-bit version for test-
ing — seed a

version4b.c Page 15
New 3-cycle generator, 32-bit version for test-
ing — seed b

version5.ads/adb Page 21 New 4-cycle generator, 64-bit version

Table 2: Supplementary files
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Version 5 would be faster on machines which properly support 64-bit integer
arithmetic (and it is certainly simpler).

For those not familiar with Ada who would like to code this is another
language, the following might be useful:

1. Gen is a record with the four 32-bit (ix, iy, iz, it) integers which are
advanced by the procedure.

2. The calculation of W in the main logic uses multiplication rather than
division, since it is faster and gives essentially identical results. (This
change made the Ada program execute about 15% faster.)

3. Value is the result of type Long Float, but constrained to be in the range
0.0..1.0. (If the value were outside this range, an exception would be
raised.) However, the value 1.0 should not be obtained, but this would
not give rise to an exception.

4. Ada allows underscores in literals which is used here for readability. It is
very important that the integer literals have the correct values.

5. There are two procedures called Reset which is called overloading in Ada.
They are distinguished (at compile-time) by the parameters.

6. The final computation of Value removes the integer part of W. It can be
undertaken by means of the text which is commented out. The while loop
is actually faster and is probably clearer.

7. The version of Reset with two parameters uses the same basic logic as
Next Sequence. However, to ensure reasonable speed, it uses 64-bit in-
teger arithmetic. One alternative would be to use a loop for Initiator

number of times — rather slow for large values.

8. Resetting the generator with the clock can only be undertaken really ef-
fectively if the characteristics of the clock are known in detail.

It is very important to check that the four cycles perform the same integer
calculation as printed by test rand.adb in the file test rand.out.

A key issue with the coding is the use of 32 and 64-bit integer arithmetic.
The main generator uses only 32-bit integer arithmetic as specified in the orig-
inal goal. However, the procedure Reset which logically performs the column
generator many times uses 64-bit integer arithmetic as coded in Ada 95 and
‘C’. If 64-bit integer arithmetic is not available, then either this form of Reset
can be omitted, or the specification can be retained by means of multi-length
working. Of course, for small values of Initiator, it is possible to apply the logic
in Next Sequence repeatedly.

If you compare the test result in test rand.out and testc.out, you will
notice that the rounding of the floating point values differs occasionally — this
is to be expected. The integers for the three cycles must be the same. The
number of values less than 0.5 might be different due to small differences in

24



the computation (say, just 1 or 2 different). On the same machine, one would
expect the values to be the same, as here with the Ada 95 and ‘C’ versions.

If you only implement the basic algorithm rather than all of the Ada 95/‘C’
package, then you should initialise the seeds to 1, 1, 1 and 1, and check the first
two random numbers produced are 0.00005336618663 and 0.84487665211815.
This check is essential to show that the constants have been correctly set.

If you produce a new version for another language, please email Brian Wich-
mann with the details, specifically the result corresponding to test rand.out

and any details you have of the built-in generator.

D Document details

1. First complete version (0.91) with related files: 12th April 2005.

2. Version 0.92. some typos corrected and two files added: 16th April 2005.

3. Version 0.93. Set for a Journal, but this makes the left-hand marginal
notes appear in the wrong place! Cannot be set with article style due to
other changes: April 28th 2005.

4. Version 0.94. Corrected marginal note error and other minor typos. 5th
May 2005.

5. Version 0.95. Very minor typos corrected. Ada clock testing code moved
and comment added to C test code to ensure they both produce same
number less than 0.5. 3rd August 2005.

6. Version 0.96. Updated to reflect comments from two referees (main paper).
Additional remarks also added to the appendix. November 29th 2005.
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