
NPL REPORT MS 20 

MCM2MCMC USER MANUAL: SOFTWARE IMPLEMENTING A 
MARKOV CHAIN MONTE CARLO ALGORITHM FOR UNCERTAINTY 
EVALUATION BASED ON THE MONTE CARLO METHOD OF 
SUPPLEMENT 1 TO THE GUM 

A B FORBES, K JAGAN AND I M SMITH 

APRIL 2018 





NPL Report MS 20

MCM2MCMC User Manual: Software implementing a
Markov chain Monte Carlo algorithm for uncertainty

evaluation based on the Monte Carlo method of
Supplement 1 to the GUM

A B Forbes, K Jagan and I M Smith
Data science Group

April 2018

ABSTRACT

This report constitutes a user manual for software developed at the National Physical Lab-
oratory to convert a sample from a Bayesian posterior distribution corresponding to a par-
ticular choice of prior distribution derived using the Monte Carlo method, to a Bayesian
posterior corresponding to a preferred prior distribution. A Metropolis-Hastings Markov
chain Monte Carlo algorithm is used to achieve this conversion.
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1 Introduction

1.1 Scope

This document describes MATLAB software implementing the second stage of a two-stage
algorithm for uncertainty evaluation described in [6, 7]. The first stage uses the Monte
Carlo method (MCM) [2, 3, 4] to produce a sample from a probability distribution that can
be regarded as a Bayesian posterior distribution corresponding to a particular choice of prior
distribution imposed by the computational approach. The second stage uses a Metropolis-
Hastings Markov chain Monte Carlo (MCMC) algorithm to convert the MCM sample to
a sample from the Bayesian posterior distribution corresponding to a preferred prior dis-
tribution. Section 2 describes the model underlying the algorithm, Section 3 describes the
individual software components and numerical examples are given in Section 4.

1.2 Software user licence agreement

The software is provided with a software user licence agreement and the use of the software
is subject to the terms laid out in that agreement. By running the software, the user accepts
the terms of the agreement.

2 Measurement response model

The software is concerned with the case in which the responses η = (η1, . . . , ηk)
> of

an instrument are modelled as functions of influence quantities β = (β1, . . . , βm)> and
quantities of interest α = (α1, . . . , αk)

>.

The instrument response ηi is modelled as

ηi = φi(α,β), i = 1, . . . , k,

so that

η =


η1

...

ηk

 =


φ1(α,β)

...

φk(α,β)

 = φ(α,β).

It is assumed that the response model can be re-expressed as

α =


α1

...

αk

 =


ψ1(η,β)

...

ψk(η,β)

 = ψ(η,β), (1)
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expressing α as an explicit function of η and β.

A joint probability density p(η,β) for η and β may be propagated through model (1) to
p(α) for α using a Monte Carlo method. If {(yq,bq), q = 1, . . . ,M} is a sample drawn
from p(η,β), then {aq = ψ(yq,bq), q = 1, . . . ,M} is a sample from p(α).

Supplement 1 (GUMS1, [2]) and Supplement 2 (GUMS2, [3]) to the Guide to the expression
of uncertainty in measurement (GUM, [1]) employ the Monte Carlo method in the following
context. It is assumed that prior knowledge about the influence quantities is encoded in a
prior density p(β). Measurement of the response of the instrument produces indications ζ
with associated likelihood p(ζ|η) ≡ p(ζ|α,β), e.g.,

ζ|η ∼ N(η, σ2I).

On the basis of ζ, η is assigned a density p(η|ζ) ∝ p(ζ|η), i.e., the Bayesian posterior
distribution corresponding to a non-informative prior p(η) ∝ 1 for η. For this example, the
form of the density p(η|ζ) is

p(η|ζ) ∝ 1

σ
exp

{
− 1

2σ2
(ζ − η)>(ζ − η)

}
.

The joint density p(η,β|ζ) is assigned to be

p(η,β|ζ) = p(η|ζ)p(β),

and independent samples {yq, q = 1, . . . ,M} and {bq, q = 1, . . . ,M} are drawn from
p(η|ζ) and p(β), respectively. It can be shown [5, 8] that {(aq,bq), q = 1, . . . ,M}, with
aq = ψ(yq,bq), are draws from the Bayesian posterior distribution

pMCM(α,β|ζ) ∝ p(ζ|α,β)|J(α,β)|p(β),

where |J(α,β)| is the absolute value of the determinant of the Jacobian matrix J = J(α,β)
with

Jij =
∂φi
∂αj

(α,β).

Thus, the MCM approach provides a sample from a Bayesian posterior distribution corre-
sponding to the prior

p(α,β) ∝ |J(α,β)|p(β).

If the preferred prior is p(α,β) = p00(α)p(β), leading to posterior distribution

p(α,β|ζ) ∝ p(ζ|α,β)p00(α)p(β),

then
p(α,β|ζ)

pMCM(α,β|ζ)
∝ p00(α)

|J(α,β)|
, (2)
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involving only p00(α) and |J(α,β)|. For the case of a univariate response model,

η = φ(α,β),

α and J are scalar quantities, where

J =
∂φ

∂α
(α,β).

The relationship (2) leads to a particularly simple implementation of the Metropolis-Hastings
independence chain algorithm [9, 10] in which draws from the approximating distribution
pMCM(α,β|ζ) are converted to draws from p(α,β|ζ).

3 Software implementation

3.1 Metropolis-Hastings independence chain algorithm

The Metropolis-Hastings independence chain (MHIC) algorithm determines a sample from
a target distribution p(α) given a sample from an approximating distribution p0(α). The
algorithm assumes that {a0,q,r, q = 1, . . . ,M, r = 1, . . . , N} have been sampled indepen-
dently from p0(α) and that densities p0(a0,q,r) and p(a0,q,r) have been evaluated, each
up to a normalising constant. The algorithm requires that each chain starts at a feasi-
ble point, i.e., p(a0,1,r) > 0 for all r. Since the sample a0,q,r has been drawn, nec-
essarily p0(a0,q,r) > 0. With this information, N chains of length M are determined,
{aq,r, q = 1, . . . ,M, r = 1, . . . , N}, accepting or rejecting the proposed a0,q,r, according
to the Metropolis-Hastings scheme (see, e.g., [10]).

The MHIC algorithm can be applied in situations in which samples are required from a
distribution p(a) which has an approximating distribution p0(a) that is easy to sample from.
The general procedure is outlined below.

Given a draw aq−1, a proposed draw a∗ for the next member of the sequence is sampled
at random from the approximating distribution p0(a). Then aq is set to a∗ with acceptance
probability

pq = min{1, rq}, rq =
p(a∗)p0(aq−1)

p(aq−1)p0(a∗)
.

A number of iterations are allowed for the Markov chain to reach the target distribution.
This number is known as the “burn-in period”. A burn-in period of length M0 is assigned,
with the intention that, for q > M0, aq is assumed to be a sample from the posterior distri-
bution.

For the current problem, the MCM sample of α and β is considered to be a sample from
the approximating distribution and the target distribution is the joint posterior distribution
for α and β with a preferred prior for α.
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The MHIC algorithm is implemented in two software components:

• mhicI.m: Use p0(a0,q,r) and p(a0,q,r) to evaluate indices that determine which sam-
ples are accepted and which are rejected.

• mhicia2a.m: Use the indices to convert the sample a0,q,r to a sample aq,r from the
posterior distribution, q > M0.

Two further software components are also provided:

• mcmcci.m: Assess the convergence of an MCMC algorithm from multiple chains.

• mcmcsum.m: Provide summary information about the posterior distribution on the
basis of the sample aq,r.

The first three software components apply to a single (scalar) quantity, whereas the last
component applies to a general (vector) quantity.

3.1.1 Determine selection indices

The software component mhicI.m has calling syntax

[IS,IA] = mhicI(P,P0)

Given p and p0 evaluated at an M × N array of samples a0,q,r, this component calculates
the selection indices IS used to convert the samples to Markov chains, and the acceptance
indices IA.

Name Size Description

Inputs

P M ×N Array P storing the target density: Pq,r = p(a0,q,r).
Constraint: P1,r > 0 for all r.

P0 M ×N Array P0 storing the approximating density P0q,r = p0(a0,q,r)
Constraint: P0,q,r > 0 for all q and for all r.

Outputs

IS M ×N Array IS storing selection indices: IS,q,r = q if a0,q,r is accepted as a
draw from p(α), and is q − 1 otherwise.

IA M ×N Array IA storing acceptance indices: IA,q,r = 1 if a0,q,r is accepted as
a draw from p(α), and is zero otherwise.
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3.1.2 Apply selection indices

The software component mhicia2a.m has calling syntax

[A] = mhicia2a(A0,IS)

This component uses the selection indices IS to convert the samples contained in A0 to
Markov chains.

Name Size Description

Inputs

A0 M ×N Array A0 storing samples from the proposal distribution.

IS M ×N Array IS storing selection indices returned by mhicI.m.

Output

A M ×N Array A storing N chains of length M .
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3.1.3 Determine convergence indices

The software component mcmcci.m has calling syntax

[Rhat,Neff,Abar,stdA] = mcmcci(A,M0)

This component may be applied to the outputs of any MCMC scheme involving multiple
chains. It evaluates convergence indices that indicate if the chains have converged to the
target distribution based on the scheme described in [10, Section 11.4].

Name Size Description

Inputs

A M ×N Array A storing N chains of length M .
Constraint: N > 1.

M0 Integer M0 specifying the burn-in period.
Constraint: M > M0 ≥ 0.
Note: the convergence indices are calculated using
Aq,r, q ≥M0 + 1.

Output

Rhat Convergence index R̂. In theory, R̂ ≥ 1 and the closer the value is to
1, the more confidence that convergence has been achieved. The output
value is max{R̂, 1}.

Neff Effective number neff of independent draws. In theory,
neff ≤ (M −M0)N and the closer neff is to the limit (M −M0)N ,
the less autocorrelation in the chains. The output value is
min{(M −M0)N,neff}.

Abar M × 1 Vector storing the means āq of the rowsAq,r, r = 1, . . . , N , of the array
A.

stdA M × 1 Vector storing the standard deviations sq of the rows
Aq,r, r = 1, . . . , N , of the array A.
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3.1.4 Calculate sample summary information

The software component mcmcsum.m has calling syntax

[abar,s,aQ,V,AA] = mcmcsum(A,M0,Q)

This component may be applied to the outputs of any MCMC scheme (or indeed any sam-
pling scheme). It provides estimates of quantiles derived from the samples associated with
the quantities. Here, A contains the samples for a vector quantity and is of dimension
M ×N × L. For the case where the vector quantity comprises α and β, L = k +m.

Given 0 ≤ q ≤ 100, the associated quantile Q is such that

Pr(α ≤ Q) = q/100.

If q = 0, the component calculates the minimum of the sample; if q = 100, the component
calculates the maximum of the sample.

Name Size Description

Inputs

A M ×N × L Array storing N chains of length M for L quantities.
Constraint: N > 1.

M0 Integer M0 specifying the burn-in period.
Constraint: M > M0 ≥ 0.
Note: the summary information for the jth quantity is calculated using
Aq,r,j , q ≥M0 + 1.

Q nQ × 1 Quantile specifications qi, with 0 ≤ qi ≤ 100.

Output

abar L× 1 Vector storing the means of the samples.

s L× 1 Vector storing the standard deviations of the samples.

aQ nQ × L Array storing the estimated quantiles.

V L× L Array storing the variance matrix of the samples.

AA n× L Array storing the samples for each quantity as a column vector, with
n = (M −M0)N .
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3.2 MHIC applied to uncertainty evaluation

The software component mcm2mcmc.m has calling syntax

[A,Rhat,Neff,IS,IA] = mcm2mcmc(A0,D,M0,P00)

This component generates Markov chains associated with the target distribution p(α,β|ζ)
given a sample from the distribution pMCM(α,β|ζ). The samples are generated as follows.
For q = 1, . . . ,M , and r = 1, . . . N , sample yq,r according to p(η|ζ) and bq,r according
to p(β) and evaluate

a0,q,r = ψ(yq,r,bq,r), Dq,r = |J(a0,q,r,bq,r)|, P00,q,r = p00(aq,r).

For univariate models (as covered by GUMS1), D(q, r) stores

Dq,r =

∣∣∣∣∂φ∂α(a0,q,r,bq,r)

∣∣∣∣ .
The samples corresponding to quantities α and β are stored in L = k + m arrays of
dimension M ×N .

mcm2mcmc.m calls modules mhicI.m, mhicia2a.m and mcmcci.m.

Name Size Description

Inputs

A0 M ×N × L Array A0 storing the M × N arrays of samples drawn from
pMCM(α,β|ζ) for the L quantities.

D M ×N Array D storing the absolute value of the determinant of the Jacobian
matrix: Dq,r = |J(a0,q,r,bq,r)|.

M0 Integer M0 specifying the burn-in period.
Constraint: M > M0 ≥ 0.

P00 M ×N Optional array P00 storing the prior density P00,q,r = p00(a0,q,r). If
p00(α) ∝ 1 is the non-informative prior, P00 does not need to be pro-
vided as an input argument to mcm2mcmc.m.

Output

A M ×N × L Array A storing the N Markov chains of length M for the L quantities.

Rhat L× 1 Convergence index R̂ for each of the quantities; see mcmcci.m.

Neff L× 1 Effective number neff of independent draws for each of the quantities;
see mcmcci.m.

IS M ×N Array IS of selection indices; see mhicI.m.

IA M ×N Array IA of acceptance indices; see mhicI.m.
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4 Numerical examples

4.1 Gauge block examples

The gauge block examples involve the observation and measurement models

η = φ(α, β1, β2) = α [1 + β2(β1 − b1)] , α = ψ(η, β1, β2) =
η

1 + β2(β1 − b1)
,

where η is the length (mm) of the gauge block at temperature β1(◦C), α is the length (mm)
of the gauge block at the reference temperature b1 = 20◦C, and β2 is the coefficient of
thermal expansion (◦C−1).

Rectangular priors are assigned to β1 and β2:

β1 ∼ R(18, 22), β2 ∼ R(0.09, 0.11).

A non-informative prior is assumed for α, p00(α) ∝ 1.

Three examples are considered:

1. Likelihood specified by a Gaussian distribution (Section 4.1.1)

2. Likelihood defined by a Student’s t distribution (Section 4.1.2)

3. Likelihood specified by a symmetric Beta distribution (Section 4.1.3)

These examples illustrate that the algorithm is applicable to a range of likelihood functions
and is not restricted to the Gaussian case alone. In particular, the Student’s t likelihood
indicates that ζ is derived from repeated measurements, and the symmetric Beta likelihood
indicates that ζ has a distribution that is symmetric but is finite in extent.

Figure 1 shows the shapes of the likelihoods p(ζ|η) for each of the three cases.
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Figure 1: Sampling distributions for ζ|η.
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4.1.1 Example 1: Likelihood defined by a Gaussian distribution

The likelihood of observing ζ, given η, is specified by

ζ|η ∼ N(η, σ2).

An indication ζ = 100 is observed, with σ taken to be 2, so that η|ζ is assigned the distri-
bution

η|ζ ∼ N(100, 22).

The MCM approach samples

b1,q,r ∈ R(18, 22), b2,q,r ∈ R(0.09, 0.11) and yq,r ∈ N(100, 22),

and evaluates
a0,q,r =

yq,r
1 + b2,q,r(b1,q,r − b1)

.

In order to implement the MCMC algorithm, it is also required to evaluate

D(q, r) =

∣∣∣∣∂φ∂α(a0,q,r, b1,q,r, b2,q,r)

∣∣∣∣ = |1 + b2,q,r(b1,q,r − b1)|.

The array A0 is of dimension M × N × 3, comprising N chains of length M for each of
the three quantities α, β1 and β2.

The calculations are performed in r gauge block example 1.m and the results are
published in r gauge block example 1.html. Convergence indices along with the
summary statistics based on the posterior distribution are displayed below.

Figure 2 shows the posterior distributions for α, β1 and β2 estimated from the MCM and
MCMC samples.

Percentage acceptance: 93

Convergence indices
Parameter 1: 1.000139
Parameter 2: 1.000116
Parameter 3: 1.000065

Effective number of independent draws
Parameter 1: 78276
Parameter 2: 81243
Parameter 3: 88533

Summary information for posterior distribution
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Mean
MCM MCMC

Parameter 1: 101.333 102.742
Parameter 2: 20.0046 19.8691
Parameter 3: 0.0999784 0.0999807

Standard deviation
MCM MCMC

Parameter 1: 12.0897 12.2173
Parameter 2: 1.15601 1.15481
Parameter 3: 0.00577961 0.00578233

0 percentiles
MCM MCMC

Parameter 1: 76.4781 77.8602
Parameter 2: 18.0001 18.0001
Parameter 3: 0.0900003 0.0900003

2.5 percentiles
MCM MCMC

Parameter 1: 83.2705 83.5541
Parameter 2: 18.102 18.084
Parameter 3: 0.0905127 0.0905162

50 percentiles
MCM MCMC

Parameter 1: 99.9574 102.055
Parameter 2: 20.0042 19.7962
Parameter 3: 0.0999586 0.0999513

97.5 percentiles
MCM MCMC

Parameter 1: 124.3 124.815
Parameter 2: 21.9014 21.8821
Parameter 3: 0.109519 0.109517

100 percentiles
MCM MCMC

Parameter 1: 134.506 134.506
Parameter 2: 22 22
Parameter 3: 0.11 0.11
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Figure 2: Posterior distributions estimated from MCM and MCMC samples for gauge block
example 1.
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4.1.2 Example 2: Likelihood defined by a Student’s t-distribution

The likelihood of observing ζ, given η, is specified by

ζ|η ∼ tν(η, s2).

An indication ζ = 100 is observed, and s and ν are taken to be 2 and 5, respectively, so that
η|ζ is assigned the distribution

η|ζ ∼ t5(100, 22).

The MCM approach samples

b1,q,r ∈ R(18, 22), b2,q,r ∈ R(0.09, 0.11) and yq,r ∈ t5(100, 22),

and evaluates
a0,q,r =

yq,r
1 + b2,q,r(b1,q,r − b1)

.

In order to implement the MCMC algorithm, it is also required to evaluate

D(q, r) = |1 + b2,q,r(b1,q,r − b1)|.

The array A0 is of dimension M × N × 3, comprising N chains of length M for each of
the three quantities α, β1 and β2.

The calculations are performed in r gauge block example 2.m and the results are
published in r gauge block example 2.html. Convergence indices along with the
summary statistics based on the posterior distribution are displayed below.

Figure 3 shows the posterior distributions for α, β1 and β2 estimated from the MCM and
MCMC samples.
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Figure 3: Posterior distributions estimated from MCM and MCMC samples for gauge block
example 2.
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4.1.3 Example 3: Likelihood specified by a symmetric Beta distribution

The likelihood of observing ζ, given η, is specified by

ζ|η ∼ Beta(η − κ, η + κ, pS, pS),

where Beta(η − κ, η + κ, pS, pS) is the symmetric standard Beta distribution defined by
shape parameters pS,1 = pS and pS,2 = pS, shifted and scaled such that it is non-zero only
on the interval (η − κ, η + κ). The value κ = σ(2pS + 1)1/2 is chosen so that the standard
deviation of the distribution is σ.

An indication ζ = 100 is observed, and σ and pS are taken to be 2 and 5, respectively, so
that η|ζ is assigned the distribution

η|ζ ∼ Beta(100− κ, 100 + κ, 5, 5),

where κ = 2
√

11. The MCM approach samples

b1,q,r ∈ R(18, 22), b2,q,r ∈ R(0.09, 0.11) and yq,r ∈ Beta(100− κ, 100 + κ, 5, 5),

and evaluates
a0,q,r =

yq,r
1 + b2,q,r(b1,q,r − b1)

.

In order to implement the MCMC algorithm, it is also required to evaluate

D(q, r) = |1 + b2,q,r(b1,q,r − b1)|.

The array A0 is of dimension M × N × 3, comprising N chains of length M for each of
the three quantities α, β1 and β2.

The calculations are performed in r gauge block example 3.m and the results are
published in r gauge block example 3.html. Convergence indices along with the
summary statistics based on the posterior distribution are displayed below.

Figure 4 shows the posterior distributions for α, β1 and β2 estimated from the MCM and
MCMC samples.
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Figure 4: Posterior distributions estimated from MCM and MCMC samples for gauge block
example 3.
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4.2 Exponential examples

Two examples are considered:

1. A univariate model (Section 4.2.1)

2. A bivariate model (Section 4.2.2)

See also [6].

4.2.1 Example 1: Univariate problem

These calculations involve the response model

η = φ(α, β) = αe−β, ζ|η ∼ N(η, σ2), β ∼ N(b, σ2
B),

for the case b = 2, σ = 0.2, σB = 0.2 and ζ = 50e−b. On this basis, η|ζ is assigned the
distribution

η|ζ ∼ N(ζ, σ2).

A non-informative prior is assumed for α.

Given draws yq,r ∈ N(ζ, σ2) and bq,r ∈ N(b, σ2
B), assign

a0,q,r = yq,r exp(bq,r), D(q, r) = exp(−bq,r).

The array A0 is of dimension M × N × 2, comprising N chains of length M for each of
the two quantities α and β.

The calculations are performed in r exponential example 1.m and the results are
published in r exponential example 1.html. Convergence indices along with the
summary statistics based on the posterior distribution are displayed below.

Figure 5 shows the posterior distributions for α and β estimated from the MCM and MCMC
samples.
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Figure 5: Posterior distributions estimated from MCM and MCMC samples for exponential
example 1.
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4.2.2 Example 2: Bivariate problem

These calculations involve the response model

η1 = φ1(α, β) = α1e
−β, ζ1|η1 ∼ N(η1, σ

2),

η2 = φ2(α, β) = (α1 + α2)e−β, ζ2|η2 ∼ N(η2, σ
2),

where β ∼ N(b, σ2
B), and there is a prior constraint that α2 ≥ 0. This model corresponds,

for example, to measuring a background response η1 and a response η2 involving an addi-
tional source α2 that is necessarily non-negative.

The Jacobian matrix J of partial derivatives with respect to α1 and α2 and its determinant
|J | are given by

J =

[
e−β 0

e−β e−β

]
, |J | = e−2β.

Given draws y1,q,r ∈ N(ζ1, σ
2), y2,q,r ∈ N(ζ2, σ

2) and bq,r ∈ N(b, σ2
B), assign

a1,0,q,r = y1q ,r exp(bq,r), a2,0,q,r = (y2,q,r − y1q ,r) exp(bq,r), D(q, r) = exp(−2bq,r),

and P00(q, r) = 1 if a2,0,q,r ≥ 0, and equal to zero otherwise. Some adjustment to the
samples may be required to ensure that a2,0,1,r > 0 for all r so that P00(1, r) > 0 as
required by the MHIC algorithm. The array A0 is of dimension M ×N × 3, comprising N
chains of length M for each of the three quantities α1, α2 and β.

Calculations for the case b = 2, σ = 0.2, σB = 0.2, ζ1 = 50e−b and
ζ2 = ζ1 + σ are performed in r exponential example 2.m and the results are pub-
lished in r exponential example 2.html. Convergence indices along with the sum-
mary statistics based on the posterior distribution are displayed below.

Figure 6 shows the posterior distributions for α1, α2 and β estimated from the MCM and
MCMC samples.
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Figure 6: Posterior distributions estimated from MCM and MCMC samples for exponential
example 2.

Page 21 of 22



NPL Report MS 20 MCM2MCMC User Manual

References

[1] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measure-
ment data — Guide to the expression of uncertainty in measurement. Joint Committee
for Guides in Metrology, JCGM 100:2008.

[2] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measure-
ment data — Supplement 1 to the “Guide to the expression of uncertainty in measure-
ment” — Propagation of distributions using a Monte Carlo method. Joint Committee
for Guides in Metrology, JCGM 101:2008.

[3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measure-
ment data — Supplement 2 to the “Guide to the expression of uncertainty in measure-
ment” — extension to any number of output quantities. Joint Committee for Guides
in Metrology, JCGM 102:2011.

[4] M. G. Cox and P. M. Harris. SSfM Best Practice Guide No. 6, Uncertainty evaluation.
Technical Report MS 6, National Physical Laboratory, Teddington, UK, 2010.
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