NPLE

National Physical Laboratory

NPL REPORT MS 21

USER MANUAL FOR MCMCMH: SOFTWARE IMPLEMENTING A
METROPOLIS-HASTINGS ALGORITHM

K JAGAN AND A B FORBES

APRIL 2018

¥

Department for
Business, Energy

& Industrial Strategy

FUNDED BY BEIS

NPL Report MS 21

User manual for MCMCMH: Software implementing a
Metropolis-Hastings algorithm

K Jagan and A B Forbes
Data Science Group

April 2018

ABSTRACT

This report constitutes a user manual for software developed at the National Physical Lab-
oratory to generate a sample from a user defined target distribution using the Metropolis-
Hastings Markov chain Monte Carlo algorithm.

NPL Report MS 21

(© NPL Management Limited, 2018

ISSN 1754-2960

National Physical Laboratory,
Hampton Road, Teddington, Middlesex, United Kingdom TW11 OLW

Extracts from this report may be reproduced provided the source is acknowledged and the
extract is not taken out of context

We gratefully acknowledge the financial support of the UK Department for Business,
Energy & Industrial Strategy

Approved on behalf of NPLML by Louise Wright,
Science Area Leader for Modelling

MCMCMH User Manual NPL Report MS 21

Contents

1 Introduction

1.1 Scope e e 1

1.2 Software user licence agreement 1

2 The Metropolis-Hastings algorithm 1
3 Software implementation 4
3.1 Generatingthe MCMCsample 5
3.1.1 mememh ... e 5

3,12 mememhic ... 6

3.2 Convergence indicesot 7

3.3 Samplesummary 8

3.4 Jumping distributions Lo oL oo 9
34.1 Gaussianrandomwalk oL 9

3.4.2 Gaussian independencechain 10

3.5 Targetdistributions L 10
351 tar.m ... 11

4 Numerical example 12

NPL Report MS 21 MCMCMH User Manual

i

MCMCMH User Manual NPL Report MS 21

1 Introduction

1.1 Scope

This document describes MATLAB software implementing the Metropolis-Hastings Markov
chain Monte Carlo (MCMC) algorithm to generate samples from a user defined target dis-
tribution. The software generates multiple chains of samples and assesses convergence to
the target distribution.

Section 2 describes the Metropolis-Hastings algorithm, Section 3 describes the individual
software components and numerical examples are given in Section 4.

1.2 Software user licence agreement

The software is provided with a software user licence agreement and the use of the software
is subject to the terms laid out in that agreement. By running the software, the user accepts
the terms of the agreement.

2 The Metropolis-Hastings algorithm

Bayes’ theorem states that the posterior distribution p(a|y) for parameters a given data y is

plaly) = K 'p(yla)p(a), K = / p(yla)p(a) da.

For all but simple problems, the key difficulty in working with the posterior distribution is in
determining the normalising constant K. This motivates the need for Markov chain Monte
Carlo (MCMC) simulation methods which generate {a, } samples from the posterior p(aly)
or indeed any distribution p(a). In particular, the Metropolis-Hastings MCMC algorithm
can be used to generate samples from distributions that are only known up to a normalising
constant.

MCMC methods are iterative schemes that produce samples in such a way that values at
a particular iteration a, 1 only depend on the values at the previous iteration ag, i.e., they
satisfy the Markov property. The chains must be designed in such a way that they converge
to the target distribution p(a). One commonly used method to achieve this is the Metropolis-
Hastings MCMC method.

Suppose we wish to sample a, from a target distribution p(a). Given a sample of a,_1, a
proposed new sample a* is drawn at random from a jumping distribution po(ala,—1). Then
a, is set to a* with acceptance probability

p(a*)po(ag—1]a®)
p(ag—1)po(a*|ag—1) ‘

1

P, =min{l,rs}, ry=

Page 1 of 15

NPL Report MS 21 MCMCMH User Manual

The simplest way to implement the acceptance step is to draw u, from the uniform dis-
tribution R(0,1) and if u, < rg, set a;, = a*, otherwise set a;, = a,—1. The role of the
acceptance probability is to ensure that when the direction of time is reversed, the behaviour
of the process remains the same. This reversibility property leads to p(a) being the limiting
distribution of the chain.

The important practical feature of this acceptance probability is that p(a) and po(a*|a)
need only be known up to a constant since p(a) appears in the ratio p(a*) /p(a,—1), etc. The
Metropolis-Hastings algorithm is also useful for sampling from complex target distributions
that cannot be sampled from directly, using a jumping distribution from which it is easier to
sample. The percentage of samples that are accepted is larger if the jumping distribution is
closer to the target distribution.

We consider two types of jumping distributions - random walk and independence chain. If
the jumping distribution depends on the sample at the previous iteration a,_1, this is said
to be a random walk algorithm; e.g., if the proposed sample is generated from a Gaussian
distribution centered around the sample from the previous iteration. If samples are generated
independently of the previous iteration this is said to be an independence chain algorithm;
e.g., if the proposed sample is generated from a Gaussian distribution centered around some
fixed value for every iteration. Since the jumping distribution in this case is independent of
the previous iteration, the Metropolis-Hastings acceptance ratio in Equation (1) reduces to

p(@")po(ag-1)

P(ag_1)po(a)’ @)

Ty =

After a number of iterations that allow the Markov chain to converge, the sampled {a,} are
considered to be sampled from the target distribution. This initial number of iterations is
known as the “burn-in” period. A burn-in period of length My implies that, for ¢ > My, a,
is considered to be a sample from the target distribution.

Test on convergence. The following scheme can be used to check the convergence of a
chain by comparing the behaviour of chains of the same length generated using different
starting points [1, section 11.6]. Suppose that we have samples a,,, ¢ = 1,2,..., M,
r=1,...,N, from N chains of length M.

For each parameter a = a;, we make the following calculations:

1 M 1 & M
_ _ _ _ ~ -2
ar = i qE_l Qqr, Q. = N TE_l ar,, B= N_1 ;_1(@-1” —a.)%,

and

1 U ,
M—1 ;(aq,r — (_l.r)Q, W = N s%.

™=

2 _
S, =

r=1

Page 2 of 15

MCMCMH User Manual NPL Report MS 21

The quantity B represents the variance between the chains, and W the variance within the
chains. The variance of the distribution associated with a|y is estimated by
N -1 1
Vi="— W+ —B.
N N
If the variance for the proposal p(a) distribution is greater than the target distribution (as
recommended to ensure that the whole of p(a) is sampled), then this estimate will represent
an overestimate, but is unbiased in the limit as M — oco. On the other hand, the within
variance V'~ = W can be expected to represent an underestimate because, for finite M,
each chain will not have had an opportunity to range over all the target distribution. As

M — oo, we expect the ratio
V+ 1/2
()"
=

to approach 1 from above. This ratio represents the potential reduction in the estimate of
the standard deviation of the distribution for a|y as M — oco. If R is less than 1.05, the
expected improvement in the estimate of the standard deviation by letting the chains run
longer will be no more that 5 %.

A note on the various jumping distributions The closer the jumping distribution is to
the target distribution, the more efficient is the algorithm, i.e. the higher the acceptance
probability of proposed samples and the faster the convergence. Some considerations need
to be made before choosing a jumping distribution.

e Support of the parameters - for instance a jumping distribution for a variance param-
eter should sample positive values.

e Symmetry of the distribution - if the target distribution is likely to be skewed it may
be more efficient to use a skewed jumping distribution.

e Random walk or independence chain - a random walk algorithm generates a sample
that is dependent on the sample at the previous iteration of the MCMC algorithm.
In the case of the independence chain algorithm, samples generated are independent
of previous samples. The random walk scheme explores the parameter space more
efficiently and is less likely to get stuck at one point. Thus for a poor jumping dis-
tribution, the Metropolis-Hastings algorithm is likely to accept more samples using a
random walk scheme than an independence chain scheme. To improve the chances
of the independence chain scheme sampling from the tails of a distribution an over-
dispersed jumping distribution is recommended. If the jumping distribution is a good
approximation to the target distribution then an independence chain scheme could
result in faster convergence than a random walk scheme.

Page 3 of 15

NPL Report MS 21 MCMCMH User Manual

3 Software implementation

The Metropolis-Hastings (MH) algorithm is implemented through several MATLAB mod-
ules. The primary modules mcmcmh . m and mcmemhi c . m generate Markov chains associ-
ated with the target distribution. The former generates samples using a jumping distribution
which could either be based on a random walk algorithm or an independence chain algo-
rithm. The latter implements an independence chain algorithm. In the case of independence
chains, since the proposed sample at the current iteration does not depend on the sample
from the previous iteration, the MH acceptance ratio is given by Equation (2). Hence, at
each iteration, we only need to compute the jumping density at the current sample po(a*)
as the density evaluated at the previous stage will already be stored as pg(a,—1). This ap-
proach reduces the computation time. Hence, if the user would like to run an independence
chain algorithm, they are advised to use the mcmcmhic.mroutine. mcmcmh . m runs a gen-
eral MH algorithm; the jumping distribution determines whether an independence chain or
random walk algorithm is used.

The other functions called by mcmcmh . m and mcmcmhic . m are:

e mcmcci.m: evaluates convergence indices

e mcsums .m: calculates summary statistics

The MCMC algorithms require the user to provide function handles for the target and jump-
ing distributions. Two example jumping distributions have been provided:

e jumprwg.m: implements a Gaussian random walk jumping distribution to be used
as a function handle in mcmcmh . m

e jumpicg.m: implements a Gaussian independence chain jumping distribution to be
used as a function handle in mcmcmhic.m

An example target distribution has also been provided:

e tar.m: the logarithm of the posterior distribution for log(a)) and log(d) for the
model y ~ N (ad, 03) assuming Gamma priors for o and §.

Test scripts that perform MCMC sampling from the target distribution t ar . m using the ran-
dom walk and independence chain algorithms have also been provided in r_example_rw.m
and r_example_ic.mrespectively.

Details of the modules are provided in the sections that follow.

Page 4 of 15

MCMCMH User Manual NPL Report MS 21

3.1 Generating the MCMC sample

3.1.1 mcmcmh

The software component mcmcmh . m has calling syntax

[S,aP,Rh,Ne, AA, IAA] = mcmcmh (target, jump,M,N,M0,Q,A0) .

This component generates N MCMC chains of length M. It generates proposal samples a*
according to the jumping distribution, and evaluates their acceptance probabilites defined
in Equation (1). An accept-reject procedure is carried out to determine whether or not a*
is selected to be part of the MCMC sample. The outputs of the jumping distribution are
proposed samples and the log of the ratio py(a,—1]|a*)/po(a*|ag—1).

Once the sample has been generated, they are passed to mcmcci . m which determines con-
vergence indices and to mcsums . m which evaluates summary statistics. Details of these
modules are provided in the following subsections.

Page 5 of 15

NPL Report MS 21 MCMCMH User Manual

Size Description

Inputs

target | function handle | This function takes as input array A(n, N) and returns a vector log p(1, N)
where log p(7) is the logarithm of target distribution evaluated at A(:, j), up to
an additive constant.

jump function handle | This function takes as input array A(n, V), samples at the current iteration, and
returns A*(n, N), proposed samples, and a 1 x N vector dp0. dp0(j) is the
difference between the logarithm of the jumping distribution associated with
moving from a = A(:,j) to a* = A*(:,) and that associated with moving
from a* to a, up to an additive constant. log(po(ala*)) — log(po(a*|a))

M Length of the chains.

N Number of chains.

MO Integer M, specifying the ‘burn-in’ period.
Constraint: M > My > 0.

0 n@ x 1 Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

AQ nx N Array of feasible starting points: the target distribution evaluated at A0(:, j) is
strictly positive.
Output

S (24+nQ) xn | Summary statistics pertaining to the samples from the posterior distribution:
mean, standard deviation and percentile limits, where the percentile limits are
given by Q.

aP N x1 Acceptance percentages calculated for each parallel chain

Rh nx1 Convergence index for each of the variables; see mcmcci .m.

Ne nxl1 Effective number of independent samples for each of the variables; see
mcmeci .m.

AA M x N xn Array storing the chains: AA(%, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1,7,:) = A0(:, j).

IAA M x N Acceptance indices. TAA(7, j) = 1 means that the proposal a* generated at the

ith step of the jth chain was accepted so that AA(i, j,:) = a*. TAA(i,j) =0
means that the proposal a* generated at the ith step of the jth chain was rejected
sothat AA(i,j,:) = AA(— 1,4,:),i > 1.

3.1.2 mcmcmhic

The software component mcmcmhic . m has calling syntax

[S,aP,Rh,Ne, AA, IAA] = mcmcmhic (target, jump,M,N,M0,Q,A0)

This component generates N MCMC chains of length M using an independence chain
algorithm. It generates proposal samples a* according to the jumping distribution, and
evaluates their acceptance probabilities defined in Equation (2). An accept-reject procedure
is carried out to determine whether or not a* is selected to be part of the MCMC sample.

The jumping distribution for the current iteration of the parameters is independent of the
previous iteration in the case of independence chains. Hence mcmcmhic . m does not need

Page 6 of 15

MCMCMH User Manual NPL Report MS 21

to evaluate the jumping probability at each iteration but merely updates these probabilities
based on whether a sampled value is accepted or rejected, thereby improving computational
efficiency.

It is important to note that the outputs of the jumping distribution for mcmcmhi c . m are pro-
posal samples and the logarithm of the jumping distribution evaluated at these samples. The
outputs of the jumping distribution for mcmcmh . m are proposal samples and the difference
log(po(ala*)) — log(po(a*|a)), where pg is the jumping distribution.

Once the sample has been generated, they are passed to mcmcci . m which determines con-
vergence indices and to mcsums . m which evaluates summary statistics. Details of these
modules are provided in the following subsections.

Size Description

Inputs

target | function handle | This function takes as input array A(n, N) and returns a vector log p(1, N)
where log p(7) is the logarithm of target distribution evaluated at A(:, j), up to
an additive constant.

jump function handle | This function returns A*(n, V), proposed samples, and a 1 x N vector [0s of
the logarithm of the jumping distribution evaluated at A*

M Length of the chains.

N Number of chains.

MO Integer M, specifying the ‘burn-in’ period.
Constraint: M > My > 0.

Q n@ x 1 Quantiles to be evaluated. Ranges from O (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

AQ nx N Array of feasible starting points: the target distribution evaluated at A0(:, j) is
strictly positive.
Output

S (24 nQ) x n | summary statistics pertaining to the samples from the target distribution: mean,
standard deviation and percentile limits, where the percentile limits are given
by Q.

aPb N x1 Acceptance percentages calculated for each parallel chain

Rh nx1 Convergence index for each of the variables.

Ne nx1 Effective number of independent samples for each of the variables.

AR M x N xn Array storing the chains: AA(i, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1,j,:) = A0(:, j).

IAA M x N Acceptance indices. I AA(i, j) = 1 means that the proposal a* generated at the

ith step of the jth chain was accepted so that AA(4, j,:) = a*. TAA(3,j) =0
means that the proposal a* generated at the ith step of the jth chain was rejected
sothat AA(i,7,:) = AA(i —1,7,:),3 > 1.

3.2 Convergence indices

The software component mcmcci .m has calling syntax

Page 7 of 15

NPL Report MS 21 MCMCMH User Manual

[Rhat,Neff] = mcmcci (A,MO0)

This component may be applied to the outputs of any Markov chain Monte Carlo scheme in-
volving multiple chains. It involves evaluating convergence indices which indicate whether
the chains have converged to the target distribution based on the scheme described in Sec-
tion 2.

Size Description

Inputs

A M x N | Array A storing N chains of length M for a single parameter.
Constraint: N > 1.

MO Integer M specifying the ‘burn-in’ period.
Constraint: M > My > 0.
Note: the convergence indices are calculated on the basis of
A(q7 T)a q Z MO + 1L
Output

Rhat Convergence index R. In theory, R > 1 and the closer the value is to 1,
the more confidence that convergence has been achieved. The output value is
max{R,1}.

Neff Effective number n.g of independent samples. In theory neg < (M — My)N

and the closer neg is to the limit (M — M) N, the less autocorrelation in the
chains. The output value is min{(M — My)N, neg}.

3.3 Sample summary
The software component mcsums . m has calling syntax

[abar,s,aQ] = mcsums (A,MO0, Q)

This component may be applied to the outputs of any Markov chain Monte Carlo scheme (or
indeed any sampling scheme). It provides estimates of quantiles derived from the samples
associated with the variables. Let n be the number of variables in the sample. Given 0 <
q < 100, the associated quantile () is such that

Pr(a < @) = ¢/100.

If ¢ = 0, the component calculates the minimum of the sample; if ¢ = 100, the component
calculates the maximum of the sample.

Page 8 of 15

MCMCMH User Manual NPL Report MS 21

Size Description
Inputs
A M x N | Array: Array storing /N chains of length M associated with a parameter.

Constraint: N > 1.

MO Integer M specifying the ‘burn-in’ period.

Constraint: M > My > 0.

Note: the summary information for the jth variable are calculated on the basis
of A(q,r), ¢ > My + 1, regarded as a vector.

Q n@ x 1 | Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value
Output

abar Sample mean: abar stores the mean of the sample associated with the vari-
able.

s Sample standard deviation: s stores the standard deviation of the sample asso-
ciated with the variable.

aQ ng x 1 | Estimated quantiles (; is an estimate of the quantile specified by ¢; for the
variable.

3.4 Jumping distributions

Proposed sample values a* are generated from the jumping distribution. As mentioned,
they are of two broad types, random walk and independence chain. Some common jumping
distributions are outlined in the following sections.

3.4.1 Gaussian random walk

The software component jumprwg . m has calling syntax

[As,dp0] = jumprwg(A,L)

It is used as a function handle for the mcmcmh .m routine. Samples of parameters are
generated from a Gaussian distribution with samples at the current iteration of the parameter
array as the mean and a fixed variance matrix. The ratio in equation (1) includes the jumping
probability of moving between the current and proposed samples. jumprwg .m evaluates
the logarithm of this ratio. For a Gaussian random walk this is always zero.

Page 9 of 15

NPL Report MS 21 MCMCMH User Manual

Size Description
Inputs
A n X N | The samples at the current iteration of the parameters
L n x n | Cholesky lower triangular factor of variance matrix of the parameter vector
Output

As n X N | Proposed parameter array which is randomly sampled from the jumping dis-
tribution

dpO | 1 x N | The difference between the logarithm of the jumping distribution associated
with moving from a = A(:, j) to a* = A*(:, j) and that associated with mov-
ing from a* to a, up to an additive constant: log(po(ala*)) — log(po(a*|a)).

3.4.2 Gaussian independence chain

The software component jumpicg.m has calling syntax

[As,10] = jumpicg(AO0,L)

It is used as a function handle for the mcmcmhic.m routine. Samples of parameters
are generated from a Gaussian distribution with a fixed mean vector and variance matrix.
jumpicg.m evaluates the logarithm of the jumping distribution evaluated at As.

Size Description

Inputs

A0 | » x N | Starting parameter array; mean of the jumping distribution

L | nxn | Cholesky factor of variance matrix of the parameter vector

Output

As | n x N | Proposed parameter array which is randomly sampled from the jumping dis-
tribution

10 | 1 x N | Logarithm of the jumping distribution evaluated at As up to an additive con-
stant.

3.5 Target distributions

In order to evaluate the ratio in equation (1), the target distribution needs to be evaluated at
the current and proposed samples. The mcmcmh . m and mcmcmhic . m modules evaluate
the logarithm of the acceptance ratio and hence, the logarithm target distribution up to an
additive constant needs to be evaluated.

Page 10 of 15

MCMCMH User Manual NPL Report MS 21

351 tar.m

tar.m has calling syntax

T = tar(ad,y,s0,m0d, s0d, mOa)

Consider the model

yi = ad + €, eiNN(O,ag), i=1,...,m.

It is assumed that o is known. « and ¢ are the quantities of interest and Gamma priors are
assigned to them:

a~ G(moa/2,moa/2), 0~ G(mgq/2, mo,dag,d/2)~

The logarithm posterior distribution for log(«) and log(9) is

1 u“ mo mo
log(p(log(), log(9)[y)) o —5—5 > (i —ad)® + ?‘z log(a) —a 2’“
0 ,—
mO,dU(Q)yd

mo.d
—log(d) —
+= og(9) 5

The inputs and output of this module are described below.

Size Description

Inputs

ad | 2 x N | The samples at the current iteration of the parameters. A(1,:) are samples of
log(«) and A(2,:) are samples from log d.

v m x 1 | Vector of data points.

s0 Known standard deviation of y.

m0d Parameter of the prior for §

s0d Parameter of the prior for §

mOa Parameter of the prior for o
Output

T 1 x N | logarithm of the posterior distribution of log(«) and log(d) up to an additive
constant.

Page 11 of 15

NPL Report MS 21 MCMCMH User Manual

4 Numerical example

Consider the model

yi=ad+¢, €~N(0,08), i=1,...,m.

It is assumed that o is known. « and ¢ are the quantities of interest and Gamma priors are
assigned to them:

a ~ G(m07a/2, m(],a/Q), O~ G(m(),d/Q, mO,dO'g,d/2)-

The posterior distribution for « and ¢ is proportional to the prior times the likelihood by
Bayes theorem:

p(a,dly) o< pyla,d)p(a,d), 3)
1 S 2 mo.a/2—1
= exp {_%‘3 ;(y, — ad) }a 0.0/ exp {—amgq/2}

deo,d/Zfl exp {—(5m0,d00,d/2}‘

Since o and § cannot be directly sampled from this distribution, the Metropolis-Hastings
MCMC algorithm is used. A possible jumping distribution for this problem is a Gaussian
random walk jumping distribution on log(«) and log(¢d). The logarithm of the correspond-
ing target distribution is

1 & mo,q mo,a
log(p(log(a),log(d)ly)) o 55 > (v — ad)® + " log(a) — a3 (4)
0 =1

2
mo. 4o
+ 04 log(5) — 5204

The variance matrix of the Gaussian random walk jumping distribution needs to be esti-
mated. This is done by finding the inverse of the Hessian matrix (second derivative of
the negative logarithm of the posterior distribution) evaluated at the maximum a posteriori
(MAP) estimates of the parameters log(«) and log(d).

The samples obtained from the MCMCMH software would pertain to log(a) and log(d)
and those from « and § can be obtained by taking their exponent.

Samples have been generated using both a random walk algorithm as well as an indepen-
dence chain algorithm. In the case of the random walk algorithm, the mean of the Gaussian
jumping distribution are samples at the current iteration of the parameter array. The mean
of the Gaussian jumping distribution in the case of the independence chain algorithm is a
vector consisting of the MAP estimates of log(a) and log(d). In both cases the variance
matrix is the inverse of the Hessian matrix described above.

Page 12 of 15

MCMCMH User Manual NPL Report MS 21

The data vector y, of length m = 10, has been generated from a Gaussian distribution with
mean od = 150 x 0.5 and standard deviation o¢g = 1. The prior parameters are mg , = 5,
moq = 10 and 09 4 = 0.1.

Samples of size 1100 x 100 were generated for each parameter. The length of the burn-in
period was 100 samples. Histograms of samples obtained from the posterior distributions
and plots of the prior distributions of « and ¢ are shown in Figure 1.

MCMC a MCMC samples: §

I Posterior I Posterior
Prior

Prior

4 4.5 0 50 100 150 200 250 300 350 400
o1

Figure 1: Prior and posterior distributions of v and § estimated from MCMC samples.

Summary statistics and convergence indices based on the Gaussian random walk algorithm
are given below for a mean acceptance of 22%.

Convergence indices
Parameter 1: 1.004218
Parameter 2: 1.004226

Effective number of independent samples
Parameter 1: 10667
Parameter 2: 10649

Summary information for posterior distribution
Mean

Parameter 1: -0.179049

Parameter 2: 4.49284

Standard deviation
Parameter 1: 0.377056
Parameter 2: 0.377069

2.5 percentile

Parameter 1: -0.884899
Parameter 2: 3.72752

Page 13 of 15

NPL Report MS 21 MCMCMH User Manual

Median
Parameter 1: -0.191559
Parameter 2: 4.50619

97.5 percentile
Parameter 1: 0.585931
Parameter 2: 5.19878

Summary statistics and convergence indices based on the Gaussian independence chain
algorithm are given below. The mean acceptance in this case is 96.7%. Since the jumping
distribution is a good approximation to the target distribution, the acceptance probability is
very high. Consequently, the effective number of independent samples is also large.

Convergence indices
Parameter 1: 1.000086
Parameter 2: 1.000089

Effective number of independent samples
Parameter 1: 85330
Parameter 2: 84902

Summary information for posterior distribution
Mean

Parameter 1: -0.171457

Parameter 2: 4.48525

Standard deviation
Parameter 1: 0.380518
Parameter 2: 0.380545

2.5 percentile

Parameter 1: -0.890695
Parameter 2: 3.72463
Median

Parameter 1: -0.180745
Parameter 2: 4.49427

97.5 percentile
Parameter 1: 0.589735
Parameter 2: 5.20452

Page 14 of 15

MCMCMH User Manual NPL Report MS 21

References

[1] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chap-
man & Hall/CRC, Boca Raton, Fl., second edition, 2004.

Page 15 of 15

	Introduction
	Scope
	Software user licence agreement

	The Metropolis-Hastings algorithm
	Software implementation
	Generating the MCMC sample
	mcmcmh
	mcmcmhic

	Convergence indices
	Sample summary
	Jumping distributions
	Gaussian random walk
	Gaussian independence chain

	Target distributions
	tar.m

	Numerical example

