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ABSTRACT

This report constitutes a user manual for software developed at the National Physical Lab-
oratory. The software generates samples from a Bayesian posterior distribution for parame-
ters of a non-linear model. The Metropolis-Hastings Markov chain Monte Carlo algorithm
is used for this purpose.
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1 Introduction

1.1 Scope

This document describes NLLSMH MATLAB software implementing the Metropolis-Hastings
Markov chain Monte Carlo (MCMC) algorithm to generate samples from a Bayesian pos-
terior distribution for parameters of a non-linear model and for the precision parameter
associated with the data. Bayesian posterior distributions for non-linear models cannot be
analytically specified and hence the Metropolis-Hastings MCMC algorithm is used to draw
samples from the distribution.

The NLLSMH software calls NPL’s MCMCMH software which generates MCMC samples
from the required posterior distribution. The software also belongs to NPL’s ’MCMC Soft-
ware for Metrology Applications’ package. The NLLSMH software also uses the Statistics
and Machine Learning toolbox and the Optimisation toolbox of MATLAB.

Section 2 describes the mathematical formulation of the problem, Section 3 describes the
individual software components and numerical examples are given in Section 4.

1.2 Software user licence agreement

The software is provided with a software user licence agreement and the use of the software
is subject to the terms laid out in that agreement. By running the software, the user accepts
the terms of the agreement.

2 Mathematical Formulation

2.1 Bayesian posterior distribution for the non-linear least squares problem

This software concerns a model of the form

yi = hi(α) + εi, εi ∈ N(0, φ−1σ2i ), i = 1, . . . ,m.

Here, yi is the measured response, hi(α) the modelled response depending on parameters
α = (α1, . . . , αn)T, n ≤ m, and εi represents a random effect drawn from a Gaussian
sampling distribution. This sampling distribution defines the likelihood of observing y
given the parameters α and φ:

p(y|α, φ) = pN(y|h(α), φ−1σ2) ∝ φm/2 exp

{
−φ

2

m∑
i=1

(
yi − hi(α)

σi

)2
}
.

Given that y has been observed, we wish to make inferences about α and φ.
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Define fi(α) = (yi − hi(α))/σi and

F (α) =
m∑
i=1

f2i (α).

The Jacobian matrix J has elements

Jij =
∂fi
∂αj

(1)

given by the derivative of fi with respect to αj evaluated at α = a.

The non-linear least squares point estimate of α is given by the a that minimises F (α). If
m > n, then a point estimate of 1/φ is given by

σ̂2 =
F (a)

m− n
. (2)

In a Bayesian setting (see, e.g., [2]) knowledge about α and φ derived from y is encapsu-
lated in the posterior distribution p(α, φ|y) where

p(α, φ|y) ∝ p(y|α, φ)p(α, φ),

and p(α, φ) is the prior distribution for α and φ. A non-informative prior for α but an
informative, possibly vague, prior for φ is

p(α) ∝ 1, φ ∼ G(m0/2,m0σ
2
0/2).

α and φ are assumed to be independent a-priori, and G represents the gamma distribution.

The term σ20 is the prior estimate of 1/φ and m0 ≥ 1 is a measure of the strength of belief
in this prior estimate, the larger the value of m0, the greater the belief.

The posterior distribution corresponding to this prior is then

p(α, φ|y) ∝ φ(m+m0)/2−1 exp

{
−φ

2

[
m0σ

2
0 + f(α)>f(α)

]}
, (3)

where, f(α) = (f1, . . . , fm)T.

If the posterior distribution of the precision is not of interest, then equation (3) can be
marginalised with respect to φ. The resulting marginal posterior distribution for α is given
by

p(α|y) ∝
[
m0σ

2
0 + f(α)>f(α)

]−(m+m0)/2
. (4)
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2.2 The Metropolis-Hastings algorithm

For nonlinear hi(α), the posterior distribution is unlikely to be given in closed form. How-
ever, we can generate samples of α and φ from the posterior distribution using an MCMC
iterative algorithm [1, 2]. In particular, the Metropolis-Hastings MCMC algorithm can gen-
erate samples from distributions that are only known up to a normalising constant.

MCMC methods are iterative schemes that produce samples in such a way that values at a
particular iteration only depend on the values at the previous iteration, i.e., they satisfy the
Markov property. The samples must also be provided in such a way that they converge to
the target distribution p(a), where a is the parameter vector. One commonly used method
to achieve this is the Metropolis-Hastings MCMC method.

Suppose we wish to sample aq from a target distribution p(a). Given a draw aq−1, a
proposed draw a∗ for the next member of the sequence is generated at random from a
jumping distribution p0(a∗|aq−1). Then aq is set to a∗ with acceptance probability

Pq = min{1, rq}, rq =
p(a∗)p0(aq−1|a∗)
p(aq−1)p0(a∗|aq−1)

. (5)

The simplest way to implement the acceptance step is to draw uq from the uniform distri-
bution R(0, 1) and if uq < Pq, set aq = a∗, otherwise set aq = aq−1. The role of the
acceptance probability is to ensure that the probability of jumping from aq−1 to a∗ is the
same as that of jumping from a∗ to aq−1. This reversibility property is a sufficient condition
for p(a) to be the limiting distribution of the chain. For p(a) to be the limiting distribution
of the chain, {aq}, q = 1, . . . ,M , the probability of moving between any two points in the
parameter space should be non-zero as should be the probability of staying on the same
point.

The important practical feature of the acceptance probability is that p(a) and p0(a∗|a) need
only be known up to a normalising constant since p(a) appears in the ratio p(a∗)/p(aq−1),
etc. The Metropolis-Hastings algorithm is also useful for sampling from complex target
distributions that cannot be sampled from directly, using a jumping distribution which is
easier to sample from. The percentage of samples that are accepted is larger if the jumping
distribution is closer to the target distribution.

Test for convergence. Convergence of chains can be assessed by comparing the behaviour
of chains of the same length generated using different starting points [2]. Suppose we have
N chains each of length M . For each parameter, the variance between chains B and the
variance within a chain W are computed. The convergence statistic R̂, a function of B
and W , represents the potential reduction in the estimate of the standard deviation of the
posterior distribution as M → ∞. It is expected that R̂ will approach 1 from above and a
value of R̂ close to 1 indicates convergence.

Another measure of effectiveness of the sampling algorithm is the effective number of inde-
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pendent draws ne. In general, samples within a chain will be autocorrelated. The effective
number of independent draws is bounded above by the total number of samples generated
and the closer ne is to the upper bound, the less autocorrelated are the samples.

2.3 Metropolis-Hastings sampling from the posterior distribution

The software is divided into four parts; each part implements a different jumping distribu-
tion. Jumping distributions are broadly of two types, random walk and independence chain.
While random walk jumping distributions draw samples that are dependent on those at the
previous iteration, independence chain jumping distributions draw samples that are inde-
pendent of past iterations. Samples from the target distributions in Equations (3) and (4) are
obtained using both random walk and independence chain schemes. In each case, the target
and suitable jumping distribution are specified and the MCMCMH software is used to draw
samples.

Gaussian random walk

Samples of α and log(φ) are obtained from the posterior distribution

p(α, log(φ)|y) ∝ φ(m+m0)/2 exp

{
−φ

2

[
m0σ

2
0 + f(α)>f(α)

]}
. (6)

This distribution is obtained using the change of variables formula in Appendix A.1. The
jumping distribution is a Gaussian distribution with the sample from the previous iteration
of the Metropolis-Hastings algorithm as the mean and a fixed variance matrix given by the
inverse of the Hessian matrix (second derivative of the target distribution with respect to
the parameters) evaluated at the maximum-a-posteriori (MAP) estimates of the parameters.
The software uses MATLAB’s fminunc function in the Optimisation toolbox in order to
evaluate the MAP estimates.

Normal gamma independence chain

The normal gamma jumping distribution for α and φ is derived by linearising f(α) around
its non-linear least squares estimate f(a). The first order Taylor series approximation of
f(α) is given by f(α) ≈ f(a) + J(α − a), where J is the Jacobian matrix evaluated at
α = a. Substituting the above in equation (3), we obtain the approximate posterior density

p(α, φ|y) ∝ φ(m+m0)/2−1

exp

{
−φ

2

[
m0σ

2
0 + (m− n)σ̂2 + (α− a)>J>J(α− a)

]}
, (7)
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where (m− n)σ̂2 = f(a)>f(a).

Using the theory of conditional probability equation (7) can be decomposed into p(α, φ|y) ∝
p(φ|y)p(α|φ,y). Since α appears linearly in Equation (7), p(φ|y) and p(α|φ,y) are eval-
uated analytically to be

φ|y ∼ G(ν/2, νσ̄2/2), α|φ,y ∼ N(a, φ−1(J>J)−1), (8)

where ν = m+m0 − n and σ̄2 = (m0σ
2
0 + (m− n)σ̂2)/ν.

The approximate Normal-Gamma posterior distribution in equation (8) can be used as a
jumping distribution to sample from the posterior distribution in equation (3). This algo-
rithm uses MATLAB’s gamrnd function in the Statistics and Machine Learning toolbox to
generate jumping samples of the precision parameter.

Multivariate t random walk

If the posterior distribution for the precision φ is not of interest, samples from the marginal
distribution for α in Equation (4) can be generated. The linearised posterior distribution in
Equation (7) can be marginalised analytically with respect to φ:

α|y ∼ tν(a, σ̄2(JTJ)−1). (9)

Jumping samples are obtained from this t distribution with mean equal to the sample from
the previous iteration of the MH algorithm, ν degrees of freedom and scaling σ̄2(JTJ)−1.
This algorithm uses MATLAB’s mvtrnd function in the Statistics and Machine Learning
toolbox to generate jumping samples of α.

Multivariate t independence chain

This algorithm samples from the marginal distribution of α in Equation (4) with jumping
distribution in Equation (9). The mean of the jumping distribution in this case is the non-
linear least squares estimate of model parameter.

This algorithm uses MATLAB’s mvtrnd function in the Statistics and Machine Learning
toolbox to generate jumping samples of α.

A note on the various sampling schemes

The closer the jumping distribution is to the target distribution, the more efficient is the
algorithm i.e. the higher the acceptance probability of proposed draws. Some considerations
need to be made before choosing a jumping distribution:
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• Support of the parameters - for instance a jumping distribution for a variance param-
eter should draw only positive values.

• Symmetry of the distribution - if the target distribution is likely to be skewed it may
be more efficient to use a skewed jumping distribution.

• Random walk or independence chain - a random walk jumping distribution generates
samples that are dependent on the samples at the previous iteration of the MCMC
algorithm. In the case of the independence chain algorithm, samples generated are
independent of previous samples. The random walk scheme explores the parameter
space more efficiently and is less likely to get stuck at one point. Thus for a poor
jumping distribution, the MH algorithm is likely to accept more samples using a
random walk scheme than an independence chain scheme. To improve the chances
of the independence chain scheme sampling from the tails of a distribution an over-
dispersed jumping distribution is recommended. If the jumping distribution is a good
approximation to the target distribution then an independence chain scheme should
yield a higher acceptance rate than a random walk scheme.

3 Software implementation

The NLLSMH software is implemented through several MATLAB modules. The parent
modules are nllsmh grw, nllsmh trw, nllsmh ngic and nllsmh ticwhich spec-
ify the target and jumping distributions that implement the Gaussian random walk (GRW),
Student’s t random walk (TRW), Normal-Gamma independence chain (NGIC) and Stu-
dent’s t independent chain (TIC) algorithms respectively. They call NPL’s MCMCMH soft-
ware to draw samples from the target distribution using the Metropolis-Hastings MCMC
algorithm.

The two random walk algorithms provide the user with the option to scale the jumping dis-
tribution in such a way that the acceptance probabilities are approximately a specified value.
A scale factor multiplies the variance matrix of the jumping distribution that regulates its
spread. The jumping samples should tend to visit high probability parts of the parameter
space but also explore the space without getting stuck at one point. A scale factor greater
than one could lead to faster convergence, as the jumping distribution would scan the sup-
port of the parameter space faster, at the price of lower acceptance probabilities. A scale
factor less than one could lead to slower convergence, however the acceptance probability
would be higher.

In order to determine a reasonable scale factor, a set of scale factor values is considered
and MCMC samples are drawn for each value using a small chain length. The logarithm of
the acceptance probability for each problem is computed and a straight line model with the
scale factor determined as the dependent variable and logarithm acceptance as dependent
variable determined. This model can then be used to evaluate the factor needed to achieve
some acceptance probability. The algorithm is outlined below.
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Given a vector of scale factors s of length ms, and the desired acceptance
probability ta,

for i = 1, ...,ms do
I. Set the variance matrix of the jumping distribution scaled by s(i).
II. Generate a Metropolis Hastings sample of modest length (say M = 200)

from the target distribution and evaluate acceptance probabilities aP .
III. Store the logarithm of the mean of aP as pa,i.

end
Perform a least squares fit the linear model s = b1 + b2pa to obtain estimates b̂1

and b̂2.
Evaluate the scale sc associated with the desired acceptance probability ta using
the fitted model sc = b̂1 + b̂2 log(ta).

Algorithm 1: scale factor determination

A scale factor for the two independence chain algorithms needs to be input by the user
as there is no recommended acceptance probability for these. An over-disposed jumping
distribution i.e. sc ≥ 1 is recommended.

An exponential decay model and a circle fitting model are considered to illustrate the use of
the software. ED evaluates the exponential decay function and its Jacobian matrix and CIR
evaluates the function and Jacobian for the circle fitting problem.

Details of the modules are provided in the sections that follow.

3.1 Gaussian random walk

3.1.1 nllsmh grw

The software component nllsmh grw.m has calling syntax

[S,aP,Rh,Ne,AA,IAA,sc] = nllsmh_grw(ahat,fun,m0,s0,M,N,M0,Q,I)

This module sets up the jumping and target distributions and calls mcmcmh.m to generate
samples using the Metropolis-Hastings algorithm. In this case, the target distribution is the
logarithm of the posterior distribution ofα and log(φ) given in Equation (6) and a Gaussian
random walk jumping distribution is used to draw proposal samples. The variance matrix
of the Gaussian random walk jumping distribution is the inverse of the Hessian matrix
evaluated at the MAP estimates of α and log(φ). The jumping distribution can be scaled to
make it more or less dispersed. The scale factor can either be set by the user or evaluated
to obtain some level of acceptance. The choice is governed by logical input I which can be
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either true or false. The algorithm is outlined below.

Given fi as described in section 2, non-linear least squares estimates of model
parameters â and prior parameters m0 and s0
I. Assign the target distribution tar grw.m.
II. Find an estimate of the variance matrix of the Gaussian jumping distribution.

1. Set starting points for optimisation as a0 a vector containing â and
log(1/s20).

2. Evaluate the maximum-a-posteriori estimates of the parameters ǎ and ˇlog(φ)
using an unconstrained optimisation routine fminunc with a0 as the starting
point. This computation requires the energy (negative logarithm of the
posterior distribution) and gradient (derivative of the energy with respect to
the parameters) which are computed in eg grw.

3. Evaluate the Hessian, H , at ǎ and ˇlog(φ) using finite differences.
4. Set the variance matrix, V , of α and log(φ) to be the inverse of the H .

III. Set starting points for MCMC: Generate random starting points from a
Gaussian distribution with mean ǎ and variance V .

IV. Set scale factor sc: The scale factor can either be set by the user or computed to
yield a certain acceptance probability.

if true then
User prompted to input scale

else if false then
User prompted to input acceptance probability and optimum scale computed

based on Algorithm 1
end
V. Gaussian random walk jumping distribution defined with variance V and scale
sc. Random samples are drawn with the previous state of the parameter array as
the mean. The Cholesky factor of the variance matrix L is computed and scaled
by sc.

VI. MCMCMH software is called to generate samples and compute convergence
and summary statistics.

Algorithm 2: nllsmh grw algorithm

The inputs and outputs to this module are described below.

Page 8 of 29



NLLSMH User Manual NPL Report MS 22

Size Description

Inputs

ahat n× 1 Nonlinear least squares estimates of parameters α of the model

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given α where, fi = (yi − hi(α))/σi, i = 1, . . . ,m and J
is defined in Equation (1).

m0 Prior degree of belief on estimate of standard deviation of the data. If σ0
is determined from a set of repeated experiments, then m0 can be set to the
number of experiments.

s0 Prior estimate of standard deviation of the data. If the estimates of σi are
reasonable, then σ0 is usually set to 1 indicating that the prior distribution for
φ has a mean of 1.

M integer Length of MCMC chains

N integer Number of MCMC chains

M0 integer Length of the burn in period

Q nQ× 1 Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

I true or false Logical variable, if I is true, then a scale factor for the jumping distribution has
to be input. If I is false, then desired acceptance probability is to be input and
a corresponding scale is determined using Algorithm 1.

Outputs

S (2 + nQ)× n Summary statistics pertaining to the samples from the posterior distribution:
mean, standard deviation and percentile limits, where the percentile limits are
given by Q.

aP N × 1 Acceptance percentages calculated for each chain

Rh n× 1 Convergence index for each of the parameters.

Ne n× 1 Effective number of independent draws for each of the variables.

AA M ×N × n Array storing the chains: AA(i, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1, j, :) = A0(:, j).

IAA M ×N Acceptance indices. IAA(i, j) = 1 means that the proposal a∗ generated at the
ith step of the jth chain was accepted so that AA(i, j, :) = a∗. IAA(i, j) = 0
means that the proposal a∗ generated at the ith step of the jth chain was rejected
so that AA(i, j, :) = AA(i− 1, j, :), i > 1.

sc The scale factor multiplied to the Cholesky factor of the variance matrix of the
jumping distribution.

3.1.2 tar grw

The software component tar grw.m has calling syntax

T = tar_grw(alp,fun,m0,s0)

This function returns the logarithm of the posterior distribution ofα and log(φ) in Equation
(6).

The inputs and outputs to this module are described below.
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Size Description

Inputs

alp p×N Current state of parameter array for N chains, n = p− 1 is the length of α

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given α where, fi = (yi − hi(α))/σi and J is the derivative
of f with respect to α.

m0 Prior degree of belief on estimate of standard deviation of the data

s0 Prior estimate of standard deviation of the data

Output

T 1×N logarithm of the posterior distribution of α and log(φ) determined up to an
additive constant

3.1.3 eg grw

The software component eg grw.m has calling syntax

[E,G] = eg_grw(alp,fun,tar,m0,s0)

This module computes the energy i.e. the negative logarithm of the target distribution, along
with its analytical gradient. This is used to find MAP estimates of the parameters and hence
construct a Hessian matrix to approximate the variance matrix of the Gaussian random walk
jumping distribution in the case where samples are drawn from the posterior distribution of
α and log(φ).

The inputs and outputs to this module are described below.

Size Description

Inputs

alp p×N Current state of parameter array for N chains, n = p− 1 is the length of α

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given α where, fi = (yi − hi(α))/σi and J is the derivative
of f with respect to α.

m0 Prior degree of belief on estimate of standard deviation of the data

s0 Prior estimate of standard deviation of the data

Output

E Energy - the negative logarithm of the posterior distribution calculated at the
current state of the parameter array, α and log(φ)

G p× 1 Gradient - The derivative of the energy with respect to each parameter evalu-
ated at the current state of the parameter array, α and log(φ)

3.1.4 jump grw

The software component jump grw.m has calling syntax
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[As,del] = jump_grw(A,L)

It is used as a function handle within the mcmcmh.m routine. Samples of parameters are
generated from a Gaussian distribution with the current state of the parameter array as the
mean and a fixed variance matrix. The ratio in equation (5) includes the jumping probability
of moving between the current and proposed states. jump grw.m evaluates the logarithm
of this ratio. For a Gaussian random walk (in fact any symmetric distribution) this is always
zero.

Size Description

Inputs

A p×N The current state of parameter array for N chains

L p× p Cholesky factor of variance matrix of the parameter vector

Output

As p×N Proposed parameter array which is randomly sampled from the jumping dis-
tribution

del 1×N The difference between the logarithm of the jumping distribution associated
with moving from a to a∗ and that associated with moving from a∗ to a, up to
an additive constant. log(p0(a|a∗)) − log(p0(a

∗|a)): for a Gaussian random
walk this is always zero.

3.1.5 scale grw

The software component scale grw.m has calling syntax

[sc,res] = scale_grw(s,tar,A0,L,ta,M,N,M0)

This function evaluates a scale factor which results in an acceptance probability of approxi-
mately ta. A set of scale factor values s is considered and Metropolis-Hastings samples are
drawn for a small chain length, say M = 200, N = 5 and M0 = 50. The logarithm of the
acceptance probability pa for each problem is computed. A straight line model s = b1+b2pa
is determined. The output sc is obtained by setting the acceptance probability at ta in the
model. The procedure is outlined in Algorithm 1.

The inputs and outputs to the function are described below.
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Size Description

Inputs

s ms× 1 Some possible scale factors to estimate the straight line model.

tar function handle Target distribution, in this case the posterior distribution of α and log(φ).

A0 p×N Starting point for each MCMC problem.

L p× p The Cholesky factor of the variance matrix of α and log(φ).

ta Percentage Desired acceptance percentage.

M The length of the MCMC chains for each MCMC problem.

N The number of parallel chains for each MCMC problem.

M0 The burn-in length for each MCMC problem.

Output

sc The scale factor which results in an acceptance probability of approximately
ta.

res ms× 1 Residuals evaluated from the model fit.
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3.2 Normal Gamma independence chain

3.2.1 nllsmh ngic

The software component nllsmh ngic.m has calling syntax

[S,aP,Rh,Ne,AA,IAA] = nllsmhic_ngic(ahat,fun,m0,s0,sc,M,N,M0,Q)

This module sets up the jumping and target distribution and calls mcmcmhic.m to gener-
ate samples using the Metropolis-Hastings algorithm. In this case, the target distribution is
the logarithm of the posterior distribution of α and φ in Equation (3) and a normal gamma
distribution is used to draw proposal samples. If f(α) is linearised around the NLLS esti-
mate of α, then the resulting posterior distribution can be decomposed into the product of a
Gamma and Gaussian distribution as p(α, φ|y) ∝ p(φ|y)p(α|φ,y) as in Equation (8). The
algorithm is outlined below.

Given fi as described in section 2, non-linear least squares estimates of model
parameters â and prior parameters m0 and s0
I. Evaluate the non-linear function and Jacobian J at â.
II. Evaluate σ̂ = ||f ||/

√
m− n, where m is the number of data points and n is the

number of parameters.
III. Compute ν = m+m0 − n and σ̄2 = (m0s

2
0 + (m− n)σ̂2)/ν.

IV. Find the upper triangular matrix R associated with the QR factorisation of J .
V. Define the jumping distribution using â, ν, σ̄2 and R and call the function to

obtain initial values for the Metropolis-Hastings algorithm.
VI. Jumping samples are obtained by first drawing φq from a Gamma distribution
G(ν/2, νσ̄2/2).

VII. Samples aq are obtained from a Gaussian distribution with mean equal to the
samples in the previous iteration and variance (R>R)−1/φq. ν and R are divided
by the scale sc. If sc is greater than one, both distributions become more
dispersed.

VIII. Define the target distribution in equation (3).
IX. MCMCMH software is called to generate samples and compute convergence

and summary statistics.
Algorithm 3: nllsmh ngic algorithm
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The inputs and outputs to this module are described below.

Size Description

Inputs

ahat n× 1 Nonlinear least squares estimates of parameters α of the model

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given alpha where, fi = (yi − hi(α))/σi and J is the deriva-
tive of f with respect to α.

m0 Prior degree of belief on estimate of standard deviation of the data

s0 Prior estimate of standard deviation of the data. If the estimates of σi are
reasonable, then s0 is usually set to 1 indicating that the prior distribution for
φ has a mean of 1.

sc Scale factor for the jumping distribution.

M integer Length of MCMC chains

N integer Number of MCMC chains

M0 integer Length of the burn in period

Q nQ× 1 Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

Outputs

S (2 + nQ)× n Summary statistics pertaining to the samples from the posterior distribution:
mean, standard deviation and percentile limits, where the percentile limits are
given by Q.

aP N × 1 Acceptance percentages calculated for each chain

Rh n× 1 Convergence index for each of the variables.

Ne n× 1 Effective number of independent draws for each of the variables.

AA M ×N × n Array storing the chains: AA(i, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1, j, :) = A0(:, j).

IAA M ×N Acceptance indices. IAA(i, j) = 1 means that the proposal a∗ generated at the
ith step of the jth chain was accepted so that AA(i, j, :) = a∗. IAA(i, j) = 0
means that the proposal a∗ generated at the ith step of the jth chain was rejected
so that AA(i, j, :) = AA(i− 1, j, :), i > 1.

3.2.2 tar ngic

The software component tar ngic.m has calling syntax

T = tar_ngic(ap,fun,m0,s0)

This function returns the logarithm of the posterior distribution of α and φ as in Equation
(3).

The inputs and outputs to this module are described below.
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Size Description

Inputs

ap p×N Current state of parameter array for N parallel chains

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given α where, fi = (yi − hi(α))/σi and J is the derivative
of f with respect to α.

m0 Prior degrees of freedom

s0 Prior estimate of standard deviation of the data

Output

T 1×N logarithm of the posterior distribution of α and φ determined up to an additive
constant

3.2.3 jump ngic

The software component jump ngic.m has calling syntax

[As,l0s] = jump_ngic(ahat,nu,s2bar,R,N)

It is used as a function handle within the mcmcmhic.m routine. Samples of φ are gener-
ated from a Gamma distribution and these are in turn used to sample α from a Gaussian
distribution with precision parameter φ. The parameters of the distribution are outlined in
Section 2.3. The jumping density of the sample generated is also evaluated.

Size Description

Inputs

ahat n× 1 Nonlinear least squares estimates of parameters.

nu Degrees of freedom of the multivariate t distribution

s2bar Weighted mean of prior variance and variance estimated from the data.

R n× n Upper triangular matrix which represents the QR factorisation of the Jacobian
J .

N Number of chains for MCMC

Output

As p×N Proposed parameter array which is randomly sampled from the jumping dis-
tribution

l0s 1×N Jumping density evaluated at the proposed parameter array.
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3.3 Student’s t random walk

3.3.1 nllsmh trw

The software component nllsmh trw.m has calling syntax

[S,aP,Rh,Ne,AA,IAA,sc] = nllsmh_trw(ahat,fun,m0,s0,M,N,M0,Q,I)

This module sets up the jumping and target distribution and calls mcmcmh.m to generate
samples using the Metropolis-Hastings algorithm. In this case, the target distribution is the
logarithm of the posterior distribution of α in Equation (4) and a Multivariate t random
walk jumping distribution is used to draw proposal samples. The jumping distribution can
be scaled to make it more or less dispersed. The scale factor can either be set by the user or
evaluated to obtain some level of acceptance. This is governed by logical input I which can
be either true or false. The algorithm is outlined below.

Given fi as described in section 2, non-linear least squares estimates of model
parameters â and prior parameters m0 and s0
I. Evaluate the non-linear function f and Jacobian J at â.
II. Evaluate σ̂ = ||f ||/

√
m− n, where m is the number of data points and n is the

number of parameters.
III. Compute ν = m+m0 − n and σ̄2 = (m0s

2
0 + (m− n)σ̂2)/ν.

IV. Find the upper triangular matrix R associated with the QR factorisation of J .
V. Randomly generate initial samples for the MCMC algorithm from a t

distribution with ν degrees of freedom, mean â and covariance matrix (R>R)−1.
VI. Define the target distribution in Eqution 4.
VII. Set scale factor sc: The scale factor can either be set by the user or computed

to yield a certain acceptance probability.
if true then

User prompted to input scale
else if false then

User prompted to input acceptance probability and optimum scale computed
based on Algorithm 1

end
VIII. Define jumping distribution in Equation 9 with the appropriate scale sc.
Random samples are drawn from a t distribution with the previous state of the
parameter array as the mean and ν degrees of freedom. R is divided by sc, so a
value sc > 1 would make the jumping distribution more dispersed.

IX. MCMCMH software is called to generate samples and compute convergence
and summary statistics.

Algorithm 4: nllsmh trw algorithm

The inputs and outputs to this module are described below.
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Size Description

Inputs

ahat n× 1 Nonlinear least squares estimates of parameters α of the model

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given alpha where, fi = (yi − hi(α))/σi and J is the deriva-
tive of f with respect to α.

m0 Prior degree of belief on estimate of standard deviation of the data

s0 Prior estimate of standard deviation of the data. This is usually set to 1 indi-
cating that the prior distribution for φ has a mean of 1.

M integer Length of MCMC chains

N integer Number of MCMC chains

M0 integer Length of the burn in period

Q nQ× 1 Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

I true or false Logical variable, if I is true, then a scale factor for the jumping distribution has
to be input. If I is false, then the scale is automatically determined such that
the acceptance probability is around ta.

Outputs

S (2 + nQ)× n Summary statistics pertaining to the samples from the posterior distribution:
mean, standard deviation and percentile limits, where the percentile limits are
given by Q.

aP N × 1 Acceptance percentages calculated for each parallel chain

Rh n× 1 Convergence index for each of the variables.

Ne n× 1 Effective number of independent draws for each of the variables.

AA M ×N × n Array storing the chains: AA(i, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1, j, :) = A0(:, j).

IAA M ×N Acceptance indices. IAA(i, j) = 1 means that the proposal a∗ generated at the
ith step of the jth chain was accepted so that AA(i, j, :) = a∗. IAA(i, j) = 0
means that the proposal a∗ generated at the ith step of the jth chain was rejected
so that AA(i, j, :) = AA(i− 1, j, :), i > 1.

sc The scale factor multiplied to the variance matrix of the jumping distribution.

3.3.2 tar trw

The software component tar trw.m has calling syntax

T = tar_trw(a,fun,m0,s0)

This function returns the logarithm of the marginal posterior distribution ofα as in Equation
(4).

The inputs and outputs to this module are described below.
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Size Description

Inputs

a n×N Current state of parameter array for N parallel chains

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given alpha where, fi = (yi − hi(α))/σi and J is the deriva-
tive of f with respect to α.

m0 Prior degrees of freedom

s0 Prior estimate of standard deviation of the data

Output

T 1×N logarithm of the posterior distribution of α up to an additive constant

3.3.3 jump trw

The software component jump trw.m has calling syntax

[As,del] = jump_trw(A,R,nu)

It is used as a function handle within the mcmcmh.m routine. Samples of parameters are
generated from a Students t distribution with the current state of the parameter array as the
mean and a fixed variance matrix and degrees of freedom. The ratio in equation (5) includes
the jumping probability of moving between the current and proposed states. jump trw.m
evaluates the logarithm of this ratio. Since the t distribution is symmetric, this will always
be zero.

Size Description

Inputs

A n×N The current state of parameter array

R n× n QR factorisation of the Jacobian J . The inverse of R is equivalent to the
Cholesky factor of the variance matrix.

nu Degrees of freedom of the multivariate t distribution

Output

As n×N Proposed parameter array which is randomly sampled from the jumping dis-
tribution

del 1×N The difference between the logarithm of the jumping distribution associated
with moving from a to a∗ and that associated with moving from a∗ to a, up to
an additive constant. log(p0(a|a∗)) − log(p0(a

∗|a)): it is always zero for a t
distribution.

3.3.4 scale trw

The software component scale trw.m has calling syntax
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[sc,res] = scale_trw(s,tar,A0,R,nu,ta,M,N,M0)

This function is similar to scale grw.m but considers R the QR factorisation of the Ja-
cobian J and ν the degrees of freedom of the Student’s t jumping distribution as inputs.

3.4 Students t independence chain

The target distribution for the independence chain algorithm is the same as the target distri-
bution for the t random walk algorithm tar trw.

3.4.1 nllsmh tic

The software component nllsmh tic.m has calling syntax

[S,aP,Rh,Ne,AA,IAA] = nllsmh_tic(ahat,fun,m0,s0,sc,M,N,M0,Q)

This module sets up the jumping and target distribution and calls mcmcmhic.m to generate
samples using the Metropolis-Hastings algorithm. In this case, the target distribution is the
logarithm of the posterior distribution of α in Equation (4) and a Multivariate t indepen-
dence chain jumping distribution is used to draw proposal samples. The only difference
between this algorithm and nllsmh trw is that jumping samples are independent of each
other in this case as the mean of the t jumping distribution is constant and equal to the
non-linear least squares estimates of the parameters.
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The inputs and outputs to this module are described below.

Size Description

Inputs

ahat n× 1 Nonlinear least squares estimates of parameters α of the model

fun function handle Takes as input α values and returns function values f(m, 1) and Jacobian
J(m,n) for given alpha where, fi = (yi − hi(α))/σi and J is the deriva-
tive of f with respect to α.

m0 Prior degree of belief on estimate of standard deviation of the data

s0 Prior estimate of standard deviation of the data. This is usually set to 1 indi-
cating that the prior distribution for φ has a mean of 1.

sc A scale factor is multiplied to the variance matrix of the jumping distribution.

M integer Length of MCMC chains

N integer Number of MCMC chains

M0 integer Length of the burn in period

Q nQ× 1 Quantiles to be evaluated. Ranges from 0 (minimum of sample) to 100 (maxi-
mum of sample) and 50 represents the median value

Outputs

S (2 + nQ)× n Summary statistics pertaining to the samples from the posterior distribution:
mean, standard deviation and percentile limits, where the percentile limits are
given by Q.

aP N × 1 Acceptance percentages calculated for each parallel chain

Rh n× 1 Convergence index for each of the variables.

Ne n× 1 Effective number of independent draws for each of the variables.

AA M ×N × n Array storing the chains: AA(i, j, k) is the kth element of the parameter vector
stored as the ith member of the jth chain. AA(1, j, :) = A0(:, j).

IAA M ×N Acceptance indices. IAA(i, j) = 1 means that the proposal a∗ generated at the
ith step of the jth chain was accepted so that AA(i, j, :) = a∗. IAA(i, j) = 0
means that the proposal a∗ generated at the ith step of the jth chain was rejected
so that AA(i, j, :) = AA(i− 1, j, :), i > 1.

3.4.2 jump tic

The software component jump tic.m has calling syntax

[As,l0s] = jump_tic(ahat,R,nu,N)

It is used as a function handle within the mcmcmhic.m routine. Samples of parameters are
generated from a t-distribution with the least squares estimates of the parameter array as the
mean and a fixed variance matrix and degrees of freedom. The logarithm of the jumping
density is evaluated for this proposal sample.
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Size Description

Inputs

ahat n× 1 The nonlinear least squares estimates of the model parameters.

R n× n QR factorisation of the Jacobian J . The inverse of R is equivalent to the
Cholesky factor of the variance matrix.

nu Degrees of freedom of the multivariate t distribution

N Number of chains

Output

As n×N Proposed parameter array which is randomly sampled from the jumping dis-
tribution

l0s 1×N logarithm of the jumping density evaluated at As.

3.5 Nonlinear functions

3.5.1 ED

The software component ED.m has calling syntax

[f,J] = ED(a,x,x0,y,si)

The exponential decay model is given by

hi = α1 exp{−α2(xi − x0)}+ α3,

where α1, α2, α3 are unknown quantities.

The outputs of the model are fi = (yi − hi(α))/σi and J , the Jacobian matrix of f with
respect to α.

The inputs and outputs to this module are described below.

Size Description

Inputs

a 3× 1 Values of parameters α for the exponential decay model

x m× 1 Vector of independent variable

x0 Perturbation of x

y m× 1 Vector of dependent variable, e.g. counts

si m× 1 Standard deviation for each data point

Output

f m× 1 Function values

J m× 3 Jacobian matrix of f with respect to α.
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3.5.2 CIR

The software component CIR.m has calling syntax

[f,J] = CIR(a,X,si)

The outputs of this module are

fi = α3 −
√

(xi − α1)2 + (yi − α2)2

where α1, α2, α3 are unknown quantities.

The outputs of the model are fi = (yi − hi(α))/σi and J , the Jacobian matrix of f with
respect to α. α1 is the abscissa of the center of the circle, α2 is the ordinate of the center of
the circle and α3 is the radius of the circle.

The inputs and outputs to this module are described below.

Size Description

Inputs

a 3× 1 Parameter estimates for the circle fitting model

X m× 2 Matrix storing the abscissa values in the first column and ordinate values in the
second

si m× 1 Standard deviation for each data point

Output

f m× 1 Function values

J m× 3 Jacobian matrix of f with respect to α.

4 Numerical examples

4.1 Exponential decay model

The exponential decay model can be expressed as

yi = α1 exp{−α2(xi − x0)}+ α3 + εi, εi ∼ N(0, φ−1σ2i ),

where α1, α2, α3 and φ are unknown quantities and x0 is the initial value for x. Such
models can be used to represent rate of decay of a radioactive element over time. In this
case, x is the time variable, x0 is the time at which the first measurement was made and y
stores the number of atoms present.

The posterior distributions given by Equations (4) and (6) from the exponential decay model
are obtained by substituting fi = (yi − hi(α))/σi, i = 1, . . . ,m, where

hi(α) = α1 exp{−α2(xi − x0)}+ α3.
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Nonlinear least squares estimates of α are obtained using the Gauss Newton algorithm and
input to the nllsmh modules. Since the target distribution is the same for all four methods,
we expect histograms of samples from the various methods to be the same. In order to test
this, the mcmcci.m module in the MCMCMH software package is used. This module
calculates the convergence indices of MCMC chains, R̂. Chains of the same parameter
obtained using different methods can be compared as if they were samples from different
chains. If the R̂ value obtained is close to one, we can conclude that the samples from
the different methods do in fact arise from the same target distribution. The R̂ values are
reported below. The R̂ values are close to one which provides evidence that the samples are
generated from the same target distribution.

Rhat alpha
Parameter 1: 1.000144
Parameter 2: 1.000176
Parameter 3: 1.000218

Rhat phi: 1.000066

The convergence indices from each of the four algorithms are displayed below. Parameters
1-3 are the α parameters and parameter 4 is the φ parameter. All the convergence indices
are close to one indicating that the chains have converged.

Convergence indices:GRW
Parameter 1: 1.001378
Parameter 2: 1.000908
Parameter 3: 1.001401
Parameter 4: 1.000433

Convergence indices:NGIC
Parameter 1: 1.003656
Parameter 2: 1.001254
Parameter 3: 1.001726
Parameter 4: 1.000156

Convergence indices:TRW
Parameter 1: 1.000925
Parameter 2: 1.000707
Parameter 3: 1.001025

Convergence indices:TIC
Parameter 1: 1.000733
Parameter 2: 1.000493
Parameter 3: 1.000748

Some summary statistics based on the sample generated using the Normal Gamma indepen-
dence chain algorithm are displayed below.

Summary information for posterior distribution: NGIC

Mean
Parameter 1: 0.836406
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Parameter 2: 1.73749
Parameter 3: 0.0244751
Parameter 4: 1

Standard deviation
Parameter 1: 0.0413289
Parameter 2: 0.212046
Parameter 3: 0.049165
Parameter 4: 0.0708996

Median
Parameter 1: 0.832635
Parameter 2: 1.73247
Parameter 3: 0.0290645
Parameter 4: 0.997997

2.5 percentile
Parameter 1: 0.765861
Parameter 2: 1.33013
Parameter 3: -0.0878412
Parameter 4: 0.865347

97.5 percentile
Parameter 1: 0.929479
Parameter 2: 2.16181
Parameter 3: 0.106873
Parameter 4: 1.14379

Histograms of the posterior samples are shown in figure 1.
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Figure 1: Posterior distributions estimated from MCMC samples for model parameters and
precision parameter using various jumping distributions for the exponential decay example.
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4.2 Arc fitting model

Non-linear least squares models can be used to fit geometrical elements to data. The data
consists of points in a coordinate system that are assumed to have Gaussian noise. The
non linear least squares fitting procedure involves minimising a function f(α,x)>f(α,x)
where x represents points in the coordinate system. f(α,x), or f for simplicity, represents
the distance of a point from the geometric element. The posterior distribution of parameters
can be obtained by substituting y − h(α) with f in Equations (4) and (6).

The arc fitting model takes the form

fi = α3 −
√

(xi − α1)2 + (yi − α2)2,

where α1, α2 and α3 are unknown quantities.

For this problem,
xi ∼ N(x∗i , φ

−1σ2i ), yi ∼ N(y∗i , φ
−1σ2i ),

where φ is an unknown precision parameter.

The posterior distributions given by Equations (4) and (6) for the arc fitting model are ob-
tained by substituting fi = (α3 −

√
(xi − α1)2 + (yi − α2)2)/σi.

An illustration of the use of this software is provided using randomly simulated data along
an arc of a circle. We assume parameter values α1 = 0, α2 = 0 and α3 = 100, and that
σi is randomly generated between 1 and 2. An estimate σ0 = 1/

√
(φ) is computed as the

standard deviation from m0 = 5 repeated measurements from a standard Gaussian distribu-
tion. Then the coordinates are derived from a Gaussian distribution with mean generated in
terms of a radius of 100 at randomly generated angles and standard deviation σ0σi.

Nonlinear least squares estimates of α are obtained using the Gauss Newton algorithm and
input to the nllsmh modules. Since the target distribution is the same for all four methods,
we expect histograms of samples from the various methods to be the same. In order to test
this, the mcmcci.m module in the MCMCMH software package is used. This module
calculates the convergence indices of MCMC chains, R̂. Chains of the same parameter
obtained using different methods can be compared as if they were samples from different
chains. If the R̂ value obtained is close to one, we can conclude that the samples from
the different methods do in fact arise from the same target distribution. The R̂ values are
reported below. All the convergence indices are close to one indicating that the samples
obtained are from the target distribution.

Rhat alpha
Parameter 1: 1.000014
Parameter 2: 1.000025
Parameter 3: 1.000014

Rhat phi: 1.000031
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The convergence indices from each of the four algorithms is displayed below. Parameters
1-3 are the α parameters and parameter 4 is the φ parameter.

Convergence indices:GRW
Parameter 1: 1.002713
Parameter 2: 1.002174
Parameter 3: 1.002697
Parameter 4: 1.002014

Convergence indices:NGIC
Parameter 1: 1.000272
Parameter 2: 1.000085
Parameter 3: 1.000278
Parameter 4: 1.000085

Convergence indices:TRW
Parameter 1: 1.001863
Parameter 2: 1.001627
Parameter 3: 1.001875

Convergence indices:TIC
Parameter 1: 1.000390
Parameter 2: 1.000051
Parameter 3: 1.000396

Some summary statistics based on the sample generated using the Normal Gamma indepen-
dence chain algorithm are displayed below.

Summary information for posterior distribution: NGIC

Mean
Parameter 1: 0.234689
Parameter 2: -0.655717
Parameter 3: 99.7054
Parameter 4: 1.38091

Standard deviation
Parameter 1: 5.01916
Parameter 2: 0.554198
Parameter 3: 4.90163
Parameter 4: 0.193551

Median
Parameter 1: 0.475351
Parameter 2: -0.655095
Parameter 3: 99.4619
Parameter 4: 1.37224

2.5 percentile
Parameter 1: -10.2886
Parameter 2: -1.74771
Parameter 3: 90.7631
Parameter 4: 1.02665

97.5 percentile
Parameter 1: 9.40418
Parameter 2: 0.434157
Parameter 3: 110.014
Parameter 4: 1.7838
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Histograms of the posterior samples are shown in figure 2.

Figure 2: Posterior distributions estimated from MCMC samples for model parameters and
precision parameter using various jumping distributions for the arc fitting example.
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A Appendix

A.1 Change of variables formula

Let x = g(y) represent a change of variables with inverse y = f(x). If y has PDF pY (y)
then the PDF pX(x) associated with x is given by

pX(x) = |Jf (x)|pY (f(x)), Jf (i, j) =
∂fi
∂xj

,

if x is in the range of g and is zero otherwise.
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