

Toward Dimension X-ray Computed Tomography to Smart Manufacturing

Liming Li^{1,2} Wenjuan Sun¹ and Stephen Brown¹

¹ National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom ² JSL Innovations, 337 Vineyard Ave, Ontario, CA 91764, United States

3rd Dimensional X-ray Computed Tomography Conference, 2nd – 3rd July 2018, University of Nottingham

- Smart Manufacturing
 - Concept of Smart Manufacturing in Industry 4.0
 - Smart Manufacturing Principle and Activities
 - Digital Twin Manufacturing advantage
- CT Inspections (Measurement System) in smart manufacturing
 - Current Inspection Industry
 - CT Inspection solution
 - What NPL DXCT team can do
- The value of smart manufacturing with CT inspection

Industry 4.0

- All countries in the world are now embracing the fourth industrial revolution (Industry 4.0)
 - Big data
 - Internet of things (IoT)
 - Smart manufacturing (M2M)
- Challenges of implementation in enterprise
 - Traditional mechanical manufacturing
 enterprises
 - Medium or small enterprises.

3rd Dimensional X-ray Computed Tomography Conference, 2nd – 3rd July 2018, University of Nottingham

Technical

Product

Documentation

National Physical Laboratory

Smart Manufacturing

Design

0 1 2 3 4 5 6 7 8 9 10 NPL 2018

Manufacturing

- Applying the latest technologies to manufacturing process.
- In each stage, digitalizing, using computer read and understand.

Inspections

(Quality

Assurance)

- Minimize human involvements in the manufacturing processing.
- By making machine smarter, optimizing manufacturing processing

Foundation of smart manufacturing

Model-Based Definition (MBD)

- Geometry
 - Nominal data, Feature to measure
- Graphic PMI (Product Manufacturing Information)
 - Human-readable: Text,, Drawings, and 3D Views
- Sematic PMI
 - Machine-readable: Geometry & Tolerance Values and Linkages
 - Using for driving machines and conformance to specification.
- ISO Standard: 10303 STEP AP242, "Managed model-based 3D engineering"

Digital Twin Manufacturing

- Virtual world and physical world. Real time synchronization.
- Create virtual/cyber machine, modeling manufacturing process,
- As earlier as possible find error and solve the problems

Example of smart manufacturing

Grand Challenge Project By Dr. Martin Hardwick (Step Tools) Lead

3rd Dimensional X-ray Computed Tomography Conference, 2nd – 3rd July 2018, University of Nottingham

Inspection Technologies

- Inspection in manufacturing process
 - Complex, key stage, more critical.
- Pre-measuring:
 - CMM, Tools configuration, Planning
- Measuring:
 - Touch-probe, Scan, Optical, Laser, <u>XCT,</u>
 Vision, Potable, Arm, Multi-sensor,
- Post measuring:
 - Evaluation following ISO 1011 GPS, ASME Y14.5 GD&T

CT Inspection Solution

Design Manufacturing Inspections (Quality Assurance)

- Inner and external
- Efficiency for complex part (NDT)
- Collecting data fast
- Challenges

0 1 2 3 4 5 6 7 8 9 10 NPL 2018

- Complex setup-operation procedure
- Huge data, data handling slow
- Lack of traceability/accuracy

Technical

Product

Documentation

9

CT Inspection Data/Work flow

SXCT 3rc

3rd Dimensional X-ray Computed Tomography Conference, 2nd – 3rd July 2018, University of Nottingham

10

Model-Based Definition (MBD) driving CT Inspection

- Optimizing CT measurement (Automated, better accuracy, shorter measuring time)
 - Orientation, position of object (Part)
 - CT sources, detector
- Speed up <u>CT data evaluation</u>
 - Filtering, feature recognition, comparison
 - Evaluate geometry dimension & tolerance
- Generate standard graphic report

National Physical Laboratory

- Reduce the size of data to speed up
- Without influencing on the level of accuracy
- Filtering types:
 - Grid, Normal vector, Sphere, Curvature
- Develop algorithms by using MBD information

CT Inspection – Feature Recognition

CT Data Evaluation – Feature Recognition

Using MBD data, develop algorithms

for feature recognition

- Least Square constrains
- K-neighborhood.

0 1 2 3 4 5 6 7 8 9 10 NPL 2018

Fast and keep the level of accuracy

- Part Alignment
- Comparison
 - with CAD model
 - with Mesh Data
- Color Mapping
- Tolerance setting

Deviation Color Settings	
Lower Tolerance: -0.2	÷
Upper Tolerance: 0.2	Ð
Show Colored surface	

National Physical Laboratory

CT Inspection - Reporting

Technical Product Documentation

- Using MBD graphical PMI
- Standard report for measurement results
 - ASME reporting standard
 - ISO AS9000...
- 3D PDF reports

Future of CT measurement system

16

- Manufacturing Industries
 - Aerospace, automobile, etc.
 - Demands ,requirements
 - Additive manufacture (AM)
- Institutes in world wide
 - NPL, NIST, Universities
 - Researches
- Inspection Venders
 - Nikon, GE, Zeiss, YXLON,...
 - Research & development
 - Products

0 1 2 3 4 5 6 7 8 9 10 NPL 2018

Benefit for manufacturing industry

- Smart manufacturing with CT Inspection fitting in the industry 4.0.
 - Streamline production, cut cycle time
 - Compliant with standards, easy globalization
 - Reduce errors, improve product quality
- Helps enterprises optimize the entire product processing and meet market needs
- Greatly increase the company's output value, and profits by reducing costs.

17

Questions

