

Observations from space and metrology: how to best use them in our quest to tackle climate change

Susanne Mecklenburg

European Space Agency, Head of Climate Office Harwell Campus, Didcot, UK

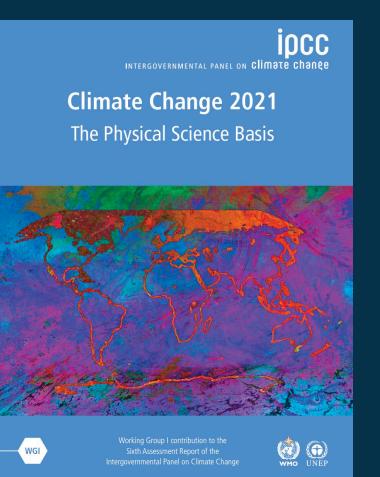
Measurements for Climate Action |14 October 2021

ESA UNCLASSIFIED – For ESA Official Use Only

💳 💶 📲 🛨 💳 📲 📲 🌌 💶 📲 📲 📲 层 💳 📲 ன 🚳 🚬 📲 😹 🛨 🛨 🔤 🔤 👘 → THE EUROPEAN SPACE AGENC

THE STATE OF THE CLIMATE & CHALLENGES

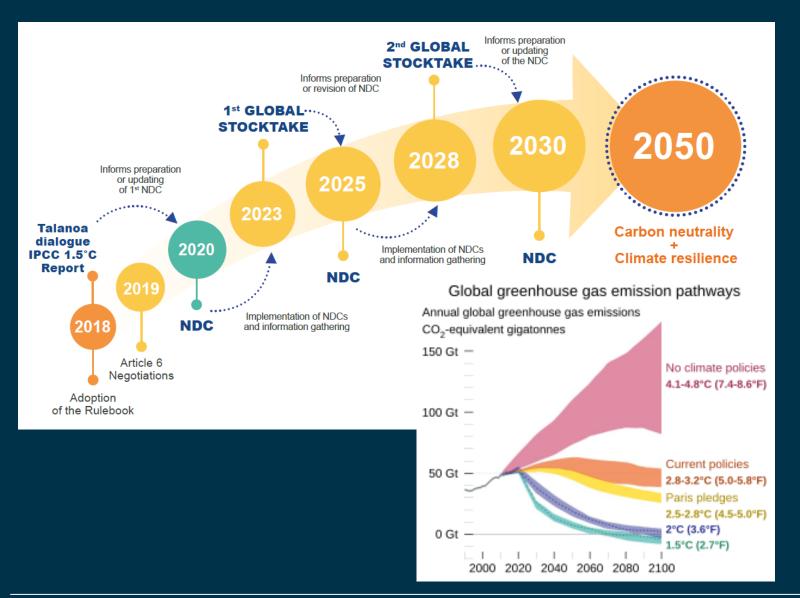
The retreating Gorner Glacier Zermatt, Switzerland, August 2021 What we see from space and what is there in reality


💳 💳 📕 🚝 💳 🔚 📕 🚝 📕 📕 🚍 📕 📲 🗮 🗮 层 💏 🔤 🖬

sa

Intergovernmental Panel of Climate Change (IPCC) Assessment Report from WG I, August 2021

"It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred."


Warming accelerates: Each of the last four decades has been successively warmer than any decade that preceded it since 1850. 2001-2020: 0.99 [0.84 to 1.10] °C 2011–2020: 1.09 [0.95 to 1.20] °C

"Methodological advances and new datasets contributed approximately 0.1°C to the updated estimate of warming in AR6."

United Nations Framework Convention on Climate Change

Paris Agreement 2015

Article 2a) ... Holding the increase in the global average temperature to well below 2°C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5°C above preindustrial levels, recognizing that this would significantly reduce the risks and impacts of climate change ...

The challenge: Think "globally local"

Policy

Support to and guidelines for *regional* implementation

Provide scientific evidence to support evolution of policy Support European climate services in providing information for adaptation and mitigation measures

National implementation and reporting

Data for assessing National Determined Contributions, national emission reporting, adaptation and mitigation measures

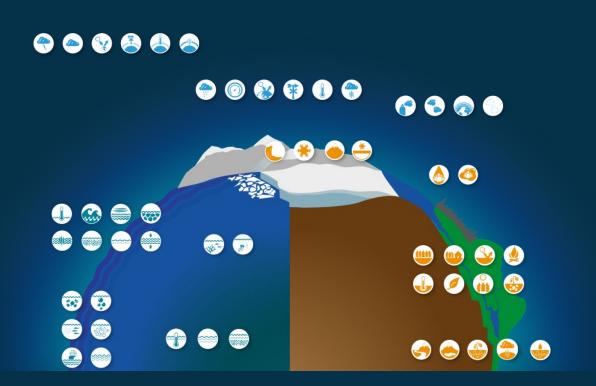
Global

Regional

OBSERVING THE EARTH FROM SPACE

long-term | continuous | timely | global | collocated

datasets.

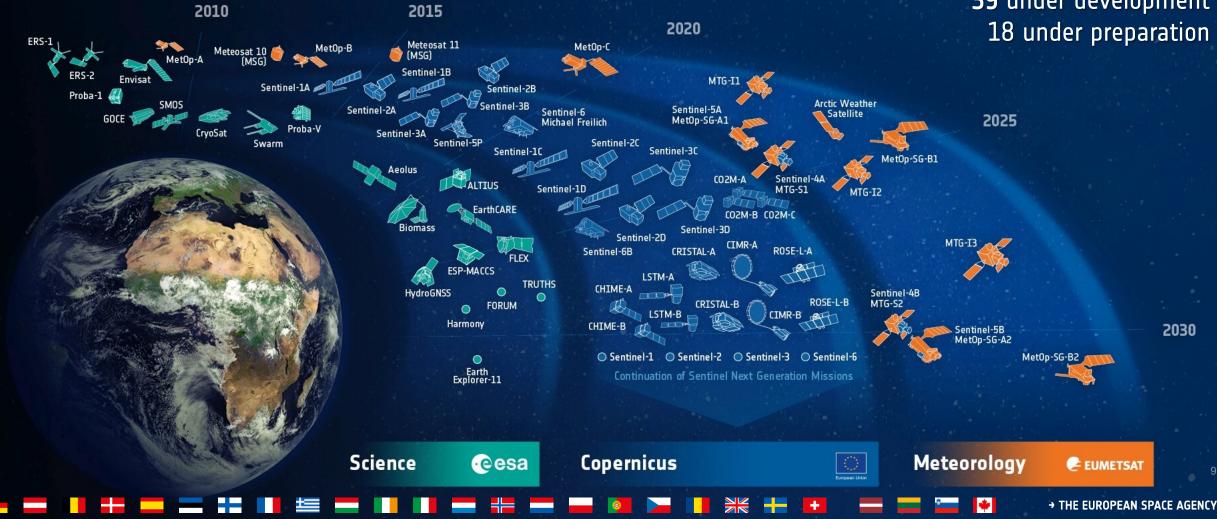

For climate – what do we want to observe? ...

Essential Climate Variable (GCOS Implementation Plan, 2016)

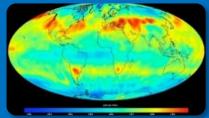
Relevance: The variable is critical for characterizing the climate system and its changes.

Feasibility: Observing or deriving the variable on a global scale is technically feasible using proven, scientifically understood methods.

Cost effectiveness: Generating and archiving data on the variable is affordable, mainly relying on coordinated observing systems using proven technology, taking advantage where possible of historical datasets.


... observed according to the <u>GCOS Climate</u> <u>Monitoring Principles</u> for consistency, traceable calibration and for climate-relevant (diurnal, seasonal, and long-term interannual) changes to be resolved.

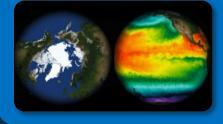
ESA-Developed Earth Observation Missions


Satellites 15 in operation 39 under development 18 under preparation

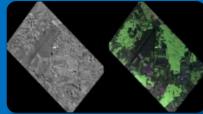
Sentinel Expansion Missions – the Future

CO2M - Anthropogenic CO₂ Monitoring

Causes of Climate Change


CRISTAL – Polar Ice & Snow Topography

Effects of Climate Change



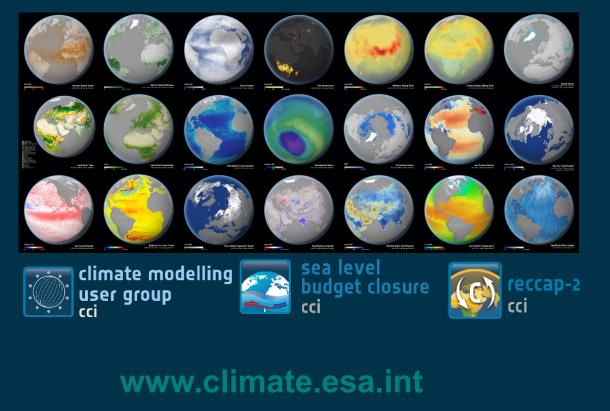
CIMR – Passive Microwave Radiometer

Sea: Surface Temp. & Ice Concentration

ROSE-L – L-band SAR Mission

Vegetation & Ground Motion & Moisture

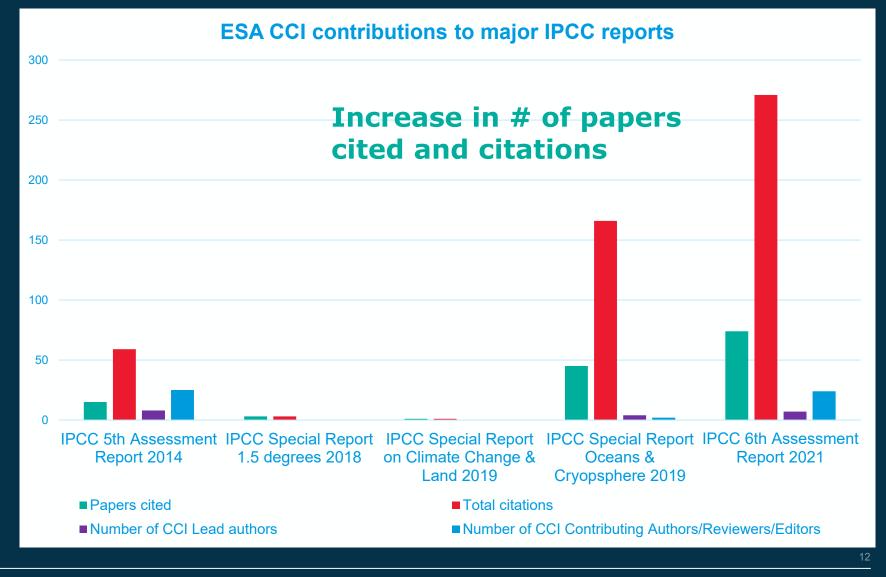
All contracts were signed in 2020


ESA Climate Office

- ✓ Implement the Climate Change Initiative (CCI) Programme – our flagship programme
- Working on international (policy)
 level with EU, Copernicus Services,
 ECMWF, EUMETSAT, UNFCCC,
 IPCC, GCOS, CEOS, CGMS,
 WCRP, WMO, Future Earth, SCO etc

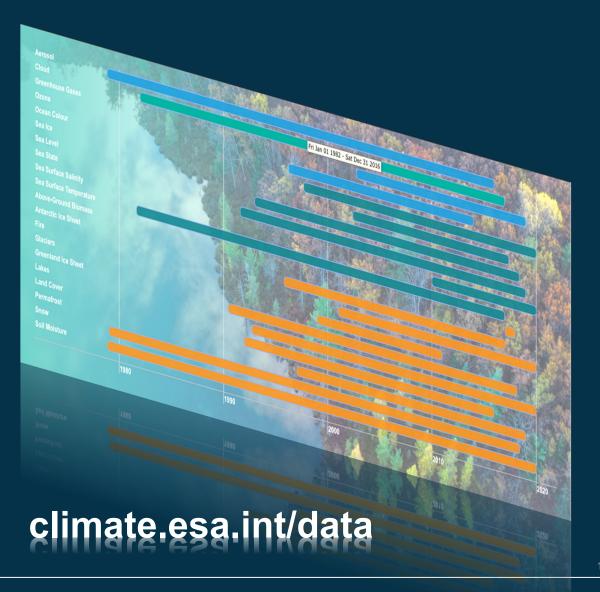
✓ Observer at IPCC and UNFCCC

Climate Change Initiative


WMO defined 54 Essential Climate Variables36 benefit from space observations21 generated by ESA Climate Change Initiative

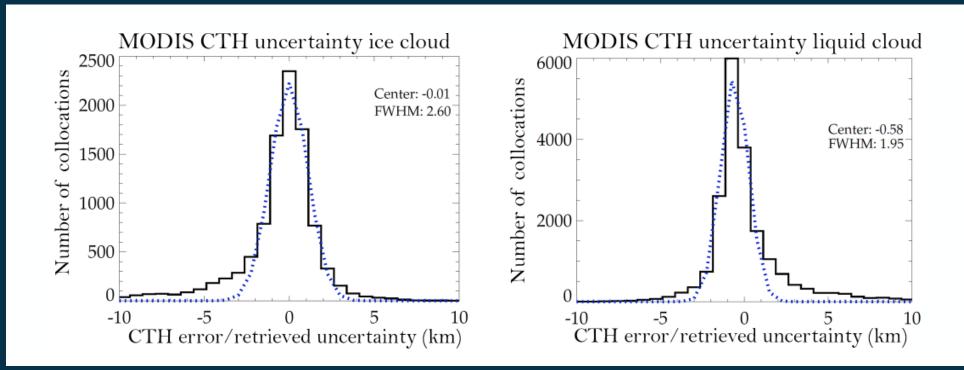
ESA's Climate Change Initiative contributing to IPCC

AR6 WG1 report: 7 lead/coordinating authors 14 contributing authors ~10 expert reviewers ~75 papers cited +270 in-text citations



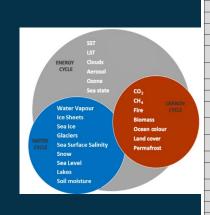
ECV DATA ACCESS – CCI OPEN DATA PORTAL

Hosted and managed by CEDA on JASMIN

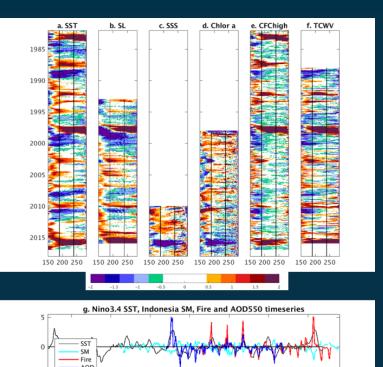

- ✓ 20 ECV products, 350TB across 180 datasets
- Free and Open Access
- Global coverage (where applicable)
- ✓ Long timeseries (20-30 years)
- ✓ **Gridded** (at a usable resolution e.g. ¼ degree)
- ✓ Validated (by in situ observations) and tested
- Bias corrected (e.g. between different satellites)
- Uncertainty characterisation (per pixel, correlated...)
- ✓ Useful temporal resolution (**daily, monthly**...)
- ✓ Can be sourced back to algorithm choice
- ✓ Level 1, 2 or 3
- Consistency between CCI_ECV datasets
- ✓ Full documentation & version control
- ✓ Available on CCI Data Portal and Copernicus Services
- ✓ Supporting information, e.g. cloud masks

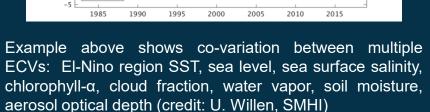
UNCERTAINTY QUANTIFICATION

Uncertainty in Climate Data Records from Earth Observation, C. J. Merchant et al., 2017, (10.5194/essd-9-511-2017) - best practice across 11 CCI ECV projects (18 authors; land, atmos, ocean, cryosphere)



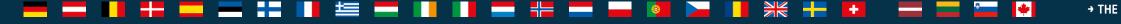
Uncertainty validation using the distribution of differences between matched cloud top heights measured by Cloud_cci and CALIPSO. A correct estimation of the retrieval uncertainty should reproduce the dashed blue curve, with a FWHM of 2.35.


Cross-ECV Consistency


Consistency of satellite climate data records for Earth system monitoring, T. Popp et al., BAMS, 2020. https://doi.org/10.1175/BAMS-D-19-0127.1

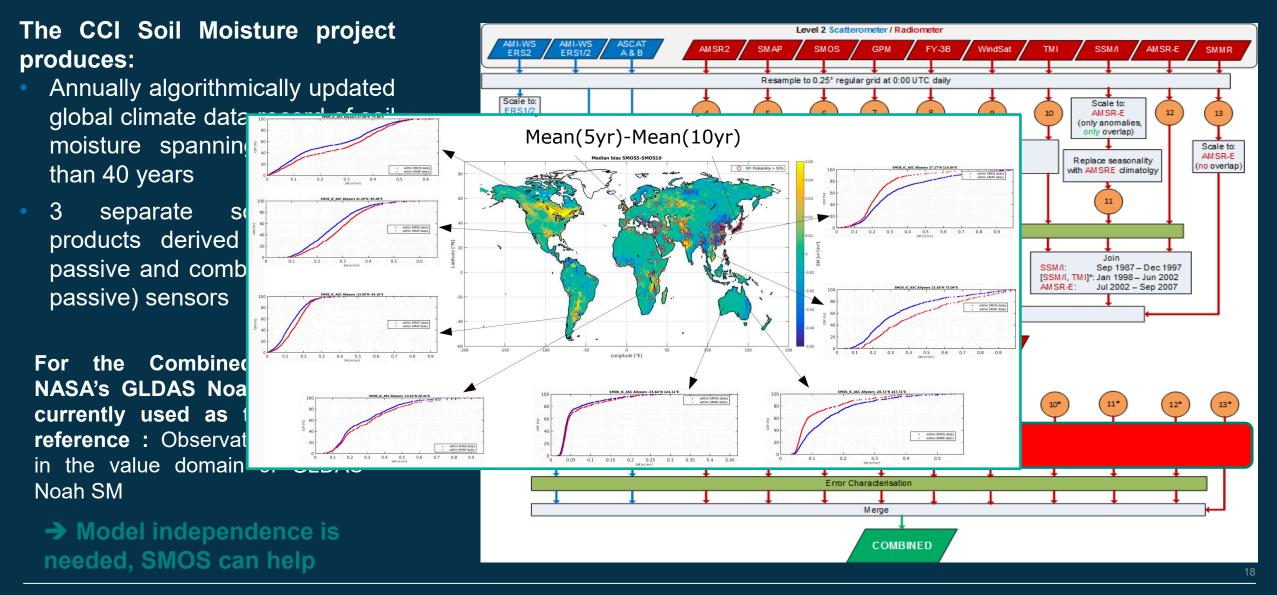
Establish and define the concept of (technical, retrieval, scientific) cross-ECV consistency - 22 CCI co-authors, with 8 detailed examples from across the CCI, identifying also status of research into cross-consistencies

ESA CCI ECVs		Aerosol	Clouds	GHGs	Ozone	Water vapour	Fire	Ice-Sheets	Land cover	Soil moisture	Glaciers	cover	Re	etr	ie	ss Vð	Al	olour	ey.	vel		Sea State	Sea surface salinity
										F	Retrie			n	sie	str	٥n						
Aerosol																							
Clouds		Wr		×	x	x	x	x	x		x	×	×		x		×	x	×		×		
GHGs		е				×									(x)						(x)		
Ozone			t	с		x									(x)		x	x			(x)		
Water vapour		EW	E	С	c		(x)	x					×		(x)		x	x		x	×		
Fire		CE		Ce	ce				x			x		(x)			x						
Ice-Sheets		d			r	w	d		x	x	x									x			
Land cover		de		Ce			<u>Cie</u> t			x	x	x	x	x	x		(x)						
Soil moisture	cies	e	E	e		We d	ţ		ţ		x	×	×		x	×	x	(x)	(x)	(x)	(x)	(x)	(x)
Glaciers	den	d					d	w	r			x		×	x		x		x				
HR land cover	ben			Ce			Ct			ţ	m		x		x								
LST	Direct process dependencies	Er	Er		r	EW r	<u>ECe</u>	Wr	r	Wr	m	r		x	x		x		x		x		
Permafrost	proce		Er	Ce		We	Er	m	Er	Er	m	Er	EW r		x		(x)			(x)			
Snow	irect	d	r		r	We	d	w	<u>ri</u>	mtf	Er m	<u>ri</u>	Wt mtf	Er m		(x)	x			(x)			
Biomass	٥			с			Cc		ic	Ĵ			С		Ĵ								
Scientific									ţį	¥	E mtf	t	EW r	WE e	w					x	x		
0														Cd	m		t		x		x	x	
consistency													Wr	m				ţ		x	x	x	(x)
								v		w	w			w	w		w		w		(x)	x	
SST		Er	Er	r	r	Er	E	mtf					EW t					Er	m	E		(x)	x
Sea State																		ţ		m			x
Sea surface salinity				с		ea		mtf			mtf			mtf	mtf			cw į	W mtf	WE	Wa	a	



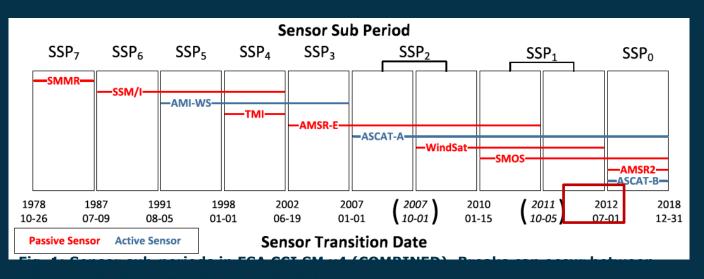
SOME THOUGHTS ON METROLOGY & CLIMATE OBSERVATIONS AND DATA

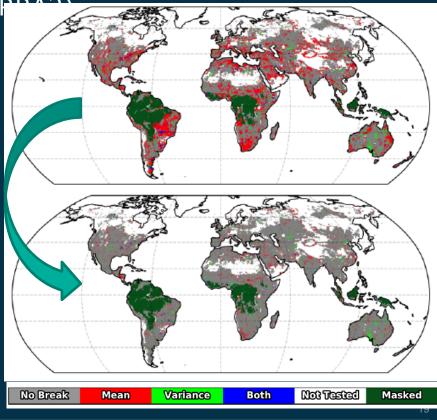
Working with the metrology community


Sources of input

- Experience and expertise from ESA Climate Office / CCI (e.g. combining different sensors, L1 versus L2)
- Joint Workshop on Representation Uncertainty in the Earth Sciences was held in March 2021, sponsored by the National Centre for Earth Observation
- Interaction with WCRP's CMIP panel
- (SI-Traceable Space-based Climate Observing System (SITSCOS), A CEOS and GSICS International Workshop held at the National Physical Laboratory, London, UK, September 9-11, 2019)

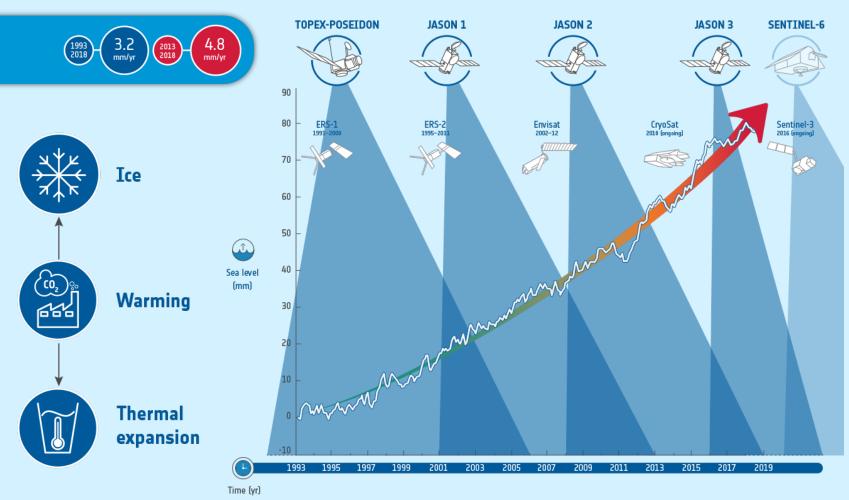
cci_soil moisture: combining passive & active sensors


Break Detection / Corrections in multi sensors CDR



- Detection of inhomogeneities (breaks in <u>mean</u> and <u>variance</u>) of a (merged) sensor time series
 - Assumption: Breaks occur between sensor sub periods / at sensor transition dates (*Fig. 1*)
 - Statistical (non-parametric) tests to identify significant differences in mean/variance between two adjacent sub-periods (*Fig. 2*) – following: *Su et al., 2016*^[1]
 - Relative to (assumed) homogenous reference (e.g. MERF
 - Wilcoxon rank sums test (break in mean)
 - Fligner-Killeen test (break in variance)

Quantile Category Matching (QCM) adjustment


https://doi.org/10.1002/2016GL070458

Sea Level Rise: combining altimeter sensors

IPCC AR WG I, 2021

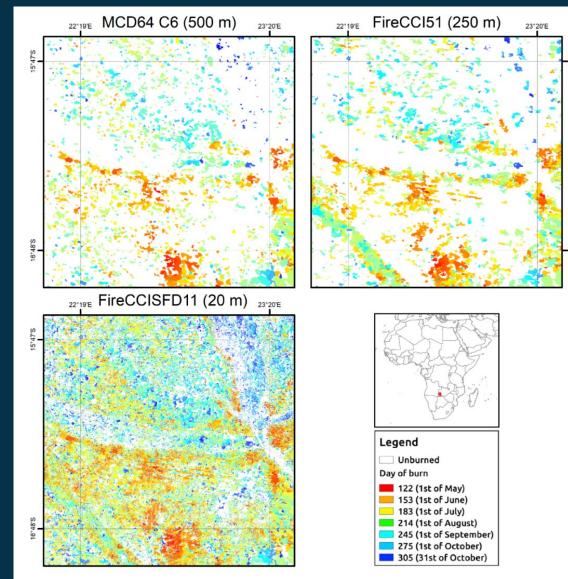
A4.3 Heating of the climate system has caused global mean sea level rise through ice loss on land and thermal expansion from ocean warming. Thermal expansion explained 50% of sea level rise during 1971– 2018, while ice loss from glaciers contributed 22%, ice sheets 20% and changes in land water storage 8%. ... Together, ice sheet and glacier mass loss were the dominant contributors to global mean sea level rise during 2006-2018.

A1.7 Acceleration of SLR

1.3 mm/year 1901-1971 1.9 mm/year 1971 -2006 3.7 mm/year 2006-2018

Impact of satellite data resolution

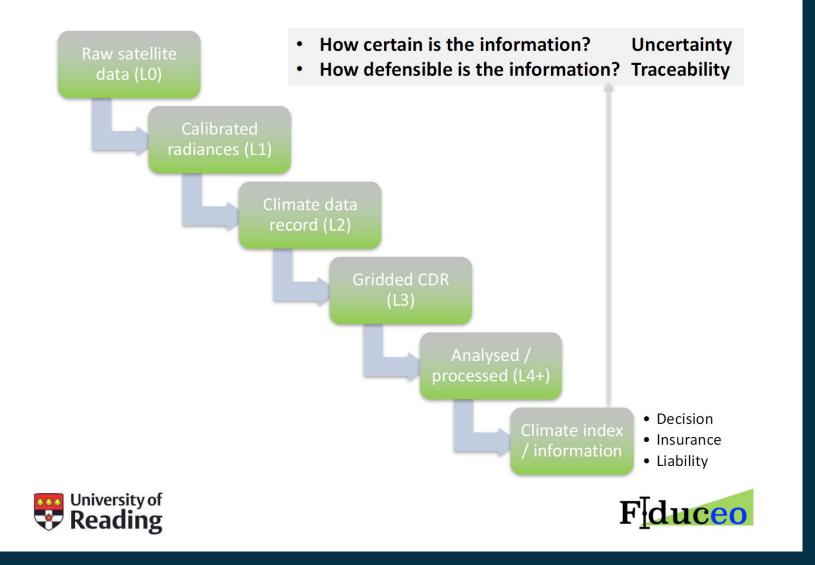
- **Importance of small fires and their carbon emission**
- → Over Africa 90% more small fires (<100 ha) were detected with Sentinel 2 than with MODIS in 2016
- → Contribute to 2.02 million km² of the 4.89 million km² total burned area detected


Corresponding Fire C emission estimated are 1.44 PgC

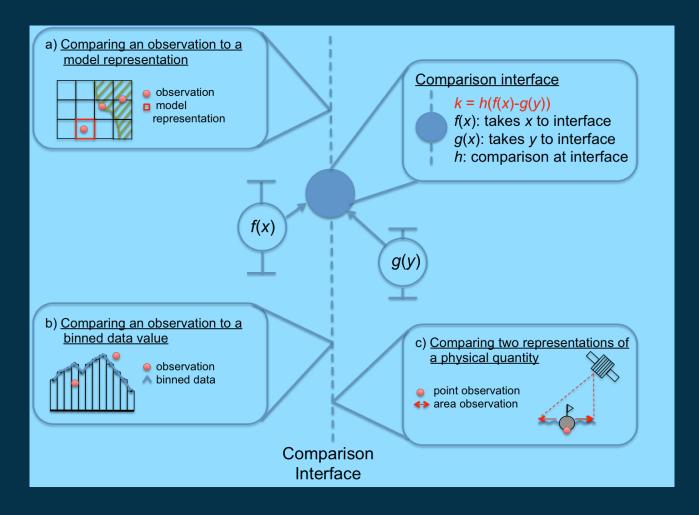
- \rightarrow 31-101% higher that previously thought
- → 14% of global C emission from FF burning

Critical driver of BA in Sub-Saharan Africa

→ Raises the contribution of biomass burning to global GHG and aerosols


Ramo, R., et al: *African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data*, Proceedings of the National Academy of Sciences Mar 2021, 118 (9) e2011160118; DOI: 10.1073/pnas.2011160118

ESA UNCLASSIFIED – For ESA Official Use Only



Applying metrological principles to EO

- 🚍 💶 📲 🚛 🚍 📲 📲 🌌 🚛 📕 📰 🚍 📲 📲 层 🔤 வ 🚳 🖂 📲 📲 🛃 🗮 🚍 🔚 👘 🔸 The European Space Agency

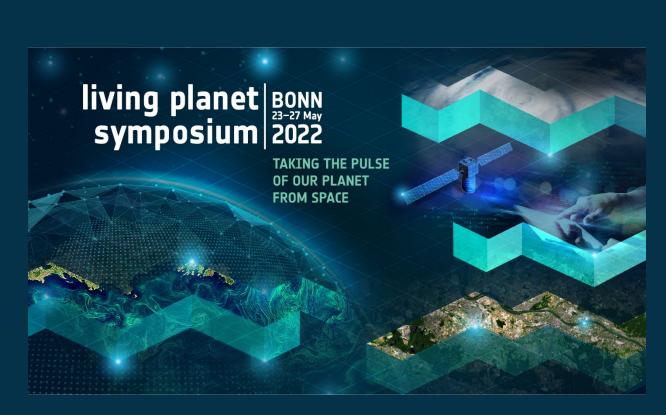
Representation uncertainty

- Workshop on representation uncertainty in the Earth Sciences, Reading, March 2021
- 'The intrinsic uncertainty at the interface of comparing two quantities, A and B, that also have an associated uncertainty.'
- 'This contribution to the uncertainty is generated only at this interface'
- Communication is key! Even within communities, different terms have been used to describe "representation uncertainty"

Climate observation and modelling community

- ESA hosts WCRP's CMIP-IPO from 2021 onwards
- WCRP flagship programme, established in 1995 under WMO
- Focal point for the leading national and international entities in climate modelling worldwide

CMIP-6 Modelling Groups 16 out of 28 in Europe; currently in its 7th cycle


Main topics from CMIP

- Cross-calibration (Truths): critical because it also enables the calibration of long-term measurements, which is key for climate change analysis and modelling.
 Quality control of CMIP data: knowing
- methods (statistics or other) that is used to identify when data are outside acceptable range.

💳 🔜 🚺 👫 💳 💳 🚼 🚺 🏣 🦛 🚺 📰 🚝 🚝 🚳 🚾 🎼 🚥 🖬 🚱 🎽 👫 🕂 🖬 🔤 🚟 🐏 🔹 The European space agency

Outlook

- ESA Ministerial Council in 2022
- New climate programme COMPASS to be presented to ESA member states in 2022 with focus on
 - Maintaining and expanding the portfolio of high-quality Essential Climate Variables, and
 - Responding to the UNFCCC Paris Agreement
- Linking climate observations and modelling: ESA will host the WCRP CMIP Project Office at ECSAY, Harwell Campus
- Extend our collaboration with operational climate services

Are you ready to discover more?

www.esa.int

European Space Agency