Calibrating 5-axis machines to improve part accuracy

5Align™
Productive Process Pyramid™

• Understanding and tracking machine behaviour...

- Process verification
- Thermal compensation
- In-cycle process control
- Process set-up & tool path generation
- Machine geometry calibration
- Probe calibration
- Machine performance optimisation
- Environmental stability & operating disciplines
- FMEA and robust process design
- Design for manufacture
Machine geometry topics

- Sources of geometric error and their impact
- 5Align™ Calibrator and Check-Up cycles for a multi-tasking mill-turn machine
- Case study – impact of machine geometry on part accuracy
- The impact of temperature
Critical geometric relationships

- To machine accurately, you need to know where the tool is relative to the workpiece in all positions:
 - **where the spindle is relative to the machine home**
 - translation in \{X,Y,Z\}, and orientation of spindle zero point (only for spindles with orientation control)
 - **where the rotary axes are relative to the spindle**
 - translation in \{X,Y,Z\} and centre-line orientation \{i,j,k\} and orientation of zero points
 - **where the workpiece is relative to the spindle**
 - offset from machine bed / rotary axis centre-lines - this relationship changes as rotary axes move
 - **tool dimensions**
 - length of tools relative to spindle gauge-line, and diameter of tools when they are spinning (accounting for run-out and pull-up)
Sources of geometric errors

- Error sources...
 - **machine geometry** is not perfect
 - linear axes not orthogonal
 - spindle taper not aligned with machine Z-axis
 - rotary axes not aligned with linear axes
 - rotary axes are not positioned exactly w.r.t. linear axes
 - rotary axis zero points are not aligned with linear axis directions
 - most CNCs are unable to compensate for inter-axis errors

- **thermal distortion** constantly changes inter-axis relationships
 - ambient temperature changes
 - self-generated heat in ball-screws and spindle
 - local heating effects due to friction
 - heat soak from major power sources

Note:
Axis linearity / angularity not considered - covered by calibration
Alignment and position errors

• **Alignment errors**
 - Driven by precision of machine construction
 - Vary very slowly (wear and tear) under normal circumstances
 - Machine crashes can cause sudden changes in alignment

• **Position errors**
 - Vary more quickly than alignment errors
 - Susceptible to temperature / heat flows
Impact of alignment errors

• If these errors are not measured and either minimised through maintenance, or accounted for in the program, features will be produced in the **wrong position**!

• A machine with poor geometry will make inaccurate parts, resulting in fruitless efforts to adjust tool and work offsets

• Geometric errors are not constants - mechanical wear and crashes can cause them to change
 – regular assessment of geometry is needed
Machine geometry topics

- Sources of geometric error and their impact
- 5Align™ Calibrator and Check-Up cycles for a multi-tasking mill-turn machine
- Case study – impact of machine geometry on part accuracy
- The impact of temperature
5Align™ solutions

- **5Align™ Calibrator…**
 - aimed at the machine builder
 - comprehensive cycles and calibration artefacts that identify individual alignment errors to assist with machine build and installation

- **5Align™ Check-Up…**
 - aimed at the machine user
 - fast check using an artefact to benchmark and monitor machine geometry over time

- **Solutions for…**
 - 5-axis machining centres
 - 5-axis multi-tasking mill-turn machines

Assumes accurate linear systems with no squareness errors
5Align™ test equipment

- Device developed for ease of use
- All items threaded – simple bung
- IMPORTANT – the device does NOT need to run on centre

Pivot point artefact

Spindle alignment artefact
Probe calibration

- Measure position of sphere with mill spindle orientated
- Re-measure sphere with probe rotated through 180 degrees
- Probe tip runout can be calculated and stylus offset loaded to variables

V714-MT-probe-cal.wmv
Check 1 – Main spindle centre line

- Measure sphere at C0 with probe orientation A0
- Measure sphere at C180
- Calculate midpoints in X and Y
Check 2 – Main spindle alignment XZ YZ

- Measure 1st sphere at C0
- Measure 1st sphere at C180
- Calculate midpoints in X and Y
- Measure 2nd sphere / diameter at C0
- Measure 2nd sphere / diameter at C180
- Calculate midpoints in X and Y
- Spindle alignment is difference between midpoints

Main spindle alignment X-Z plane (also X-Y plane)
Check 3 – Mill spindle alignment XZ YZ

• Measure sphere at Spindle 0
• Measure sphere at Spindle 0 using point on shaft of probe
• Measure sphere at Spindle 180 using point on shaft of probe
• Calculate midpoint in X and Y
• Mill Spindle alignment is difference between points
Check 4 – B-axis pivot, head length & pivot to spindle error

- Measure sphere at B0
- Measure sphere at B-90
- Calculate distance moved in X (radial) & Z (X1,Z1)
- Swing radius = (X1+Z1)/2
- Head length = Swing radius – sphere radius – probe length
- Pivot point to mill spindle = Z1 – swing radius

![Diagram showing measurement setup](V718-B-pivot.wmv)
Check 5 – B-axis translation errors

- Measure sphere position XYZ
- Update WCS
- Using dynamic work offsets or custom macro, generate WCS for new B axis position
- Move B-axis
- Measure sphere positional error X,Y,Z
- Repeat through axis movement

V719-B-tracking.wmv
5Align™ Check-Up results

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Radius
Best Fit: 8.6083
Max.: 8.6094
Min.: 8.6076
Spread: 0.0020
Machine geometry topics

- Sources of geometric error and their impact
- 5Align™ Calibrator and Check-Up cycles for a multi-tasking mill-turn machine
- Case study – impact of machine geometry on part accuracy
- The impact of temperature
Mill-turn test-piece design
Test-piece machining processes

- The face and diameter were rough and finish turned, these become the datums for the CMM check.
- The face slot is machined with the mill spindle horizontal, the side slots with the mill spindle vertical, all features produced using the end of the cutter.
- The face and side holes are spotted (B-axis horizontal / vertical), then drilled and single point bored.
- Two face holes used to align on the CMM.
Test procedure

• The Renishaw 5Align™ Calibrator tests carried out without parameter update
• The machine ‘tool eye’ calibrated using a setting tool
• All cutting tools datumed against the tool eye
• First test piece machined
• Machine parameters updated as prescribed by the 5Align™ Calibrator tests
• Second test piece machined
• Both parts inspected on a Mitutoyo DCC CMM
CMM measurement results

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Drawing reference</th>
<th>Deviation</th>
<th>Influencing parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.000 turned diameter</td>
<td>B4</td>
<td>0.212</td>
<td>Machine centreline X-axis</td>
</tr>
<tr>
<td>1.0 deep milled slot front face</td>
<td>D3</td>
<td>0.019</td>
<td>Demonstrates relationship to turned face - offset correct</td>
</tr>
<tr>
<td>Centre Hole X0</td>
<td>B5</td>
<td>0.12</td>
<td>Machine centreline X-axis</td>
</tr>
<tr>
<td>Centre Hole Y0</td>
<td>B5</td>
<td>0.003</td>
<td>Machine centreline Y-axis</td>
</tr>
<tr>
<td>29.5 milled flat (1)</td>
<td>C4</td>
<td>0.535</td>
<td>Machine centreline X-axis, Head length, Alpha error</td>
</tr>
<tr>
<td>29.5 milled flat (2)</td>
<td>C5</td>
<td>0.541</td>
<td>Machine centreline X-axis, Head length, Alpha error</td>
</tr>
<tr>
<td>Side bored hole (1) position Z-</td>
<td>C3</td>
<td>-0.329</td>
<td>Head length, Alpha error</td>
</tr>
<tr>
<td>axis</td>
<td></td>
<td>-0.003</td>
<td></td>
</tr>
<tr>
<td>Side bored hole (1) position Y-</td>
<td>C3</td>
<td>0.019</td>
<td>Y-axis Yaw error</td>
</tr>
<tr>
<td>axis</td>
<td></td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Side bored hole (2) position Z-</td>
<td>D3</td>
<td>-0.329</td>
<td>Head length, Alpha error</td>
</tr>
<tr>
<td>axis</td>
<td></td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td>Side bored hole (2) position Y-</td>
<td>D3</td>
<td>0.028</td>
<td>Y-axis Yaw error</td>
</tr>
<tr>
<td>axis</td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- The effects of the correct calibration were significant and improved the accuracy of the machined part to an acceptable level.

- **No tool offsets were altered to achieve the change in results**

- Without using 5Align™, an operator would try altering tool offsets to achieve nominal dimensions and undoubtedly become frustrated due to the limited effect across all errors.

- Following correct machine calibration however, any residual errors can confidently be attributed to tool wear and deflection, enabling tool offsets to be used to control the machining process.
Machine geometry topics

• Sources of geometric error and their impact
• 5Align™ Calibrator and Check-Up cycles for a multi-tasking mill-turn machine
• Case study – impact of machine geometry on part accuracy
• The impact of temperature
Thermal errors - ‘C frame’ VMC

Spindle motor

Internal heat sources

X

Y

Z

FRONT VIEW

SIDE VIEW
Thermal errors - ‘C frame’ VMC

HEAT FLOWS

FRONT VIEW

SIDE VIEW
Thermal errors - ‘C frame’ VMC

- Small drift in X direction due to ball-screw heating
- Larger drift in Y due to local ball-screw heating and heat soak into casting
- C frame opens up and grows, due to Z-axis ball-screw heating and heat soak from spindle motor. Big effect in Z. Also affects the Y-axis.
Thermal errors - ambient temperature

- Changes in temperature in the machine shop during the day will affect the thermal condition of machines...
 - higher / lower temperatures will cause machines to expand / contract
 - temperature gradients in the shop may create differential expansions, especially on large, unguarded machines
 - rapidly changing ambient temperatures can cause unpredictable changes in machine geometry
 - different materials
 - constrained growth
Check 6 – spindle position tracking

• An in-process check that quickly identifies how the relative positions of the main and milling spindles has moved since it was last calibrated
 – Use for tracking impact of temperature

• If possible, measure the position of a small, recently turned diameter…
 – Either use error in position to update system parameters
 – Or update a primary work co-ordinate to use for subsequent milling operations

• If it is not possible to measure a diameter…
 – Use a datum point on the chuck to track the centre-line (note: this is subject to axis growth errors)
Check 7 – B-axis error tracking

• An in-process check that quickly identifies where the pivot point, head length and pivot to spindle error have moved since they were last calibrated
 – Use for tracking impact of temperature

• Measure a corner on either the part or the chuck at B0 and B-90
 – Analyse as per check 4
 – Either update system parameters (if possible)
 – Or establish a work co-ordinate in each spindle orientation to be used
Suggested calibration regime

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Calibration Activities</th>
</tr>
</thead>
</table>
| YEARLY: | • Full laser check on linear & rotary axes
 • QC10 Ballbar check to benchmark linear axis performance
 • 5Align™ Calibrator cycles to optimise & benchmark machine alignments
 • Establish limits of acceptance |
| MONTHLY: | • Ballbar check to monitor linear axis performance
 • 5Align™ Check-Up cycle to monitor machine alignments
 • Compare with acceptance limits |
| DAILY: | • Establish calibration trail between tools and spindle probe
 • Probe calibration |
| IN-PROCESS:| • In-process reaffirmation of spindle alignment and pivot point
 • Establish position of part relative to spindle |
Machine geometry summary

- The alignment of 5-axis machines is critical to machining accuracy
- Alignments can be affected by wear & tear, crashes and temperature
- 5Align™ Calibrator cycles measure each component of machine alignment in an automated, repeatable manner
- 5Align™ Check-Up cycles provide a benchmark for machine geometry condition monitoring
- In-process checks can track the hour-by-hour impact of heat flows and temperature
- Solutions for various 5-axis machine configurations