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1 Executive summary

Almost all of the current generation of scientific instruments contain a significant amount of
software. Since it is hard to quantify the reliability or quality of such software, two questions
immediately arise:

e As a user of such an instrument, how can I be assured that the software is of a sufficient
standard to justify its use?

e As adeveloper of such software, what development techniques should I use, and how can
I assure my customers of the quality of the resulting software?

This Good Practice Guide addresses these two questions. The intended readership are those
responsible for software in scientific instruments and those using such software. Software written
as a research project or to demonstrate the feasibility of a new form of measurement is excluded
from the scope of this Guide. We also exclude the more specialised area of Programmable Logic
Controllers, since another guide is available covering this [14].

The Guide surveys current good practice in software engineering and relates this practice to
applications involving scientific instruments. Known pitfalls are illustrated with suggested means
of avoiding them.

The general approach is a three stage process as follows:

1. A risk assessment based upon a model of an instrument with its software.

2. An assessment of integrity required on the software, based upon the risk assessment (called
the Software Integrity Level).

3. Guidance on the software engineering methods to be employed determined by the
Software Integrity Level.

It must be emphasised that there is no simple universal method (silver bullet) for producing
correct software and therefore skill, sound technical judgement and care are required. Moreover,
if it is essential for the quality of the software to be demonstrated to a third party, then convincing
evidence is needed which should be planned as an integral part of the software development
process.

To aid in the application of this Guide, some check lists are provided.

To avoid complexity in the wording of this Guide, it is assumed that the software is already in
existence. It is clear that use could be made of the Guide during the development, but it is left to
the reader to formulate its use in that context.

No consideration has been given here of the possibility of standardising this material, or obtaining
some formal status for it.
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2 Introduction

The use of software either within or in conjunction with a scientific instrument can provide
additional functions in a very cost-effective manner. Moreover, some instruments cannot function
without software. Hence, it is not surprising that there is an exponential growth of software in
this area. Unfortunately these changes can give rise to problems in ensuring that the software is
of an appropriate standard.

The problem with software is largely one of unexpected complexity. Software embedded with an
instrument could be inside just one ROM chip and yet consist of 1Mbyte of software. Software of
such a size is well beyond that for which one can attain virtually 100% confidence. This implies
that one has to accept that there is a possibility of errors occurring in such software.

An area in which there has been a substantial effort to remove software errors is in
safety applications, and hence the methods used and specified in safety-critical systems are used
here as an indication of what might be achievable, typically at a significant cost. For general
advice in this area, see [11].

An example area in which very high standards are required in software production is that for
airborne flight-critical software. The costs for producing such software can easily be about one
man-day per machine instruction — obviously too demanding for almost all software within
scientific instruments. Hence the main objective behind this Guide is to strike a balance between
development cost and the proven quality of the software.

The main approach taken here is one of risk assessment as a means of determining the most
appropriate level of rigour (and cost) that should be applied in a specific context.
A major problem to be faced with software is that the failure modes are quite different than with

a simple instrument without software. An example of this is that of the non-linear behaviour of
software in contrast to simple measuring devices — see Software is non-linear on page 21.

2.1 Requirements

There are a number of standards which specify requirements for software in scientific instruments
which are collected together here with an indication of the issues to be covered by this Guide.
The more relevant standards appear first.

ISO/IEC Guide 25. This is the ISO equivalent [16] of the M10 (see below). Paragraph 10.6
states: Calculations and data transfers shall be subject to appropriate checks. Paragraph
10.7 states: Where computers or automated equipment are used for the capture, processing,
manipulation, recording, reporting, storage or retrieval of calibration or test data, the
laboratory shall ensure that:

1. the requirements of this Guide are complied with;

2. computer software is documented and adequate for use;
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3. procedures are established and implemented for protecting the integrity of data; such
procedures shall include, but not be limited to, integrity of data entry or capture, data
storage, data transmission and data processing;

4. computer and automated equipment is maintained to ensure proper functioning and
provided with the environmental and operating conditions necessary to maintain the
integrity of calibration and test data;

5. it[the laboratory] establishes and implements appropriate procedures for the main-
tenance of security of data including the prevention of unauthorized access to, and
the unauthorized amendment of, computer records.

This Guide gives the most detailed indication of the requirements, and hence is the most
useful for both development and assessment.

EN45001. This standard [5] is the European equivalent to the previous standard. Section 5.4.1

M10.

states that: All calculation and data transfers shall be subject to appropriate checks. Where
results are derived by electronic data processing techniques, the reliability and stability of
the system shall be such that the accuracy of the results is not affected. The system shall
be able to detect malfunctions during programme execution and take appropriate action.

The standard gives a different gloss on the same area. Here, (numerical) stability and
reliability are mentioned, but security and integrity are not. Again, following this Guide
should ensure compliance with this standard.

This document is the UKAS laboratory accreditation standard [26]. Section 8.6 states:
The Laboratory shall establish procedures when using computer data processing to ensure
that the collection, entry, processing, storage, or transmission of calibration or test data is
in accordance with the requirements of this Standard. Section 8.7 states: Calculations and
data transfers shall be subject to appropriate checks.

In practice, these requirements are interpreted by the UKAS Assessor. It is hoped that this
Guide will aid this interpretation and reduce the risk of the Assessor taking a different view
from the Laboratory.

Weighing machines. The WELMEC document summarises the position for such machines [32].

The requirements here derive from the EU Directive 90/384/EEC which has three relevant
parts as follows:

1. Annex I, No 8.1: Design and construction of the instruments shall be such that the
instruments will preserve their metrological qualities when properly used and
installed, and when used in an environment for which they are intended....

2. Annex I, No 8.5: The instruments shall have no characteristics likely to facilitate
fraudulent use, whereas possibilities for unintentional misuse shall be minimal.
Components that may not be dismantled or adjusted by the user shall be secured
against such actions.
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3. Annex II, No 1.7: The applicant shall keep the notified body that has issued the EC
type-approval certificate informed of any modification to the approved type....

Clearly, only part of these requirements are relevant to the software of instruments in
general. The WELMEC Guide derives three specific requirements for software from the
above Directives as follows:

1. Section 3.1: The legally relevant software shall be protected against intentional
changes with common software tools.

2. Section 3.2: Interfaces between the legally relevant software and the software parts
not subject to legal control shall be protective.

3. Section 3.3: There must be a software identification, comprising the legally relevant
program parts and parameters, which is capable of being confirmed at verification.

In the context of instruments not within the ambit of legal requirements, there are two
important principles to be noted from the above:

e The handling of the basic measurement data should be of demonstrably high integrity.

e The software should be properly identified (this arises from configuration control
with ISO 9001 [17], in any case, but there is no requirement that ISO 9001 is applied
to such machines).

IEC 601-1-4. The standard covers the software in medical devices [13] and is used both in
Europe to support a Directive and by the FDA in the USA [10]. The standard is based upon
risk assessment with the software engineering based upon ISO 9000-3 [18]. The flavour of
the standard can be judged from a few key extracts below, with those parts relevant to this
Guide being:

1. Section 52.204.3.1.2: Hazards shall be identified for all reasonably foreseeable
circumstances including: normal use; incorrect use.

2. Section 52.204.3.1.6: Matters considered shall include, as appropriate: compatibil-
ity of system components, including hardware and software; user interface,
including command language, warning and error messages; accuracy of
translation of text used in the user interface and ‘instructions for use’; data
protection from human intentional or unintentional causes, risk/benefit criteria; third
party software.

3. Section 52.204.4.4: Risk control methods shall be directed at the cause of the hazard
(e.g. by reducing its likelihood) or by introducing protective measures which operate
when the cause of the hazard is present, or both, using the following priority: inherent
safe design; protective measures including alarms; adequate user information on the
residual risk.
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4. Section 52.207.3: Where appropriate the specification shall include requirements
for: allocation of risk control measures to subsystems and components of the system;
redundancy; diversity; failure rates and modes of components; diagnostic coverage;
common cause failures; systematic failures, test interval and duration; maintainabil-
ity; protection from human intentional or unintentional causes.

5. Section 52.208.2: Where appropriate, requirements shall be specified for: software
development methods; electronic hardware; computer aided software engineering
(CASE) tools; sensors, human-system interface; energy sources; environmental
conditions; programming language, third party software.

It can be seen that this standard is mainly system-oriented and does not have very much
to state about the software issues. However, the key message is that the level of criticality
of the software must be assessed, and the best engineering solution may well be to ensure
the software is not very critical. This standard covers only instruments which are on-line
to the patient as opposed used to analyse specimens from a patient (say). Not all medical
applications could be regarded as ‘scientific instruments’, and therefore the relevance of
this guide needs to be considered.

DO-178B. This is the civil avionics safety-critical software standard [25]. It is not directly
relevant. However, if an instrument were flight-critical, then any software contained within
it would need to comply with this standard. In practice, instruments are replicated
using diverse technologies and hence are not often flight-critical. This standard is very
comprehensive, and specifies an entire software development process, including details on
the exact amount of testing to be applied.

The conclusion for this Guide is that this standard is only relevant for very high-risk
contexts in which it is thought appropriate to apply the most demanding software engi-
neering techniques. This standard can be taken as an ideal goal, not achievable in practice,
due to resource constraints.

IEC 61508 (draft). This standard is a generic one for safety-critical applications [12]. In
contrast to the previous standard, this one allows for many methods of compliance. A
catalogue is provided in Part 3 of the standard which handles the software issues. This
catalogue is used here as a means of selecting specific methods that may be appropriate in
some contexts. This generic standard is less demanding than the previous one, and hence
could be applied without the same demands on resources. Guidelines for use within the
motor industry have been developed from this standard [30]

The conclusion for this Guide is that this standard is not directly relevant, but could be
applied in specific contexts. The catalogue of techniques provides a reference point to
a wide variety of software engineering methods. For an analysis of this standard for
accreditation and certification, see [41].

A very informative report [24], that has many parallells to this one, undertakes an
assessment of devices which could be an instrument based upon an early draft of IEC 1508
(now 61508).
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For a detailed research study of assessing instruments for safety application by means of
a worked example, see the SMART Reliability study [4]. This study was based upon (an
earlier edition of) this Guide, but enhanced to reflect the safety requirements. The issue of
the qualification of SMART instruments in safety applications is noted as a research topic
in a Health and Safety Commission report [15].

The conclusion from this survey of the standards is that they are broadly similar and that aiming
to meet all the requirements is a reasonable way of proceeding. One exception to this is that the
very demanding requirements in DO-178B cannot be realistically merged with the others. Hence,
if an instrument is required to meet the most demanding levels of DO-178B, then that cannot be
expected of an instrument designed to satisfy the other standards mentioned here. Thus this
Guide aims to provide advice on producing software which will satisfy any of these standards,
with the exception of DO-178B (levels A and B).

2.2 An instrument model

In order to provide a framework for the discussion of the software for an instrument, we present
here a simple model. The components of the model in Figure 1 are as follows:

Basic instrument. The basic instrument contains no software. It performs functions according
to the control logic and provides output. This instrument itself is outside the scope of this
Guide, but it is essential that the properties of the instrument are understood in order to
undertake an effective appraisal of the software. The basic instrument contains sensors
and appropriate analogue/digital converters.

Control software. This software processes output from the basic instrument for the purpose of
undertaking control actions.

Data processing software. This software performs a series of calculations on data from the
basic instrument, perhaps in conjunction with the control software, to produce the main
output from the instrument. (In the case of complex instruments, like Coordinate
Measuring Machines, the data processing software provided can include a programming
language to facilitate complex and automatic control.)

Internal data. This data is held internally to the instrument. A typical example would be
calibration data. Another example might be a clock which could be used to ‘time-out’
a calibration.

Operator/user. In some cases, there is an extended dialogue with the user which implies that
the control function can be quite complex. This dialogue could be automated via some
additional software (which therefore could be included or excluded from this model).

In this model, we are not concerned about the location of the software. For instance, the control
software could be embedded within the instrument, but the data processing software could be

6
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Figure 1: A model of an instrument
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in a PC or workstation. It is even possible for the subsequent data processing to involve several
computers via a Laboratory Information Management System (LIMS). In applying this Guide,
you may have a choice in deciding where to draw the line at the bottom of this diagram. For
instance, one could decide to include or exclude a LIMS. If the LIMS is considered, then
reference [6] on a medical application provides some useful insights. The integrity of the
production of the test/measurement certification should not be forgotten [29].

The basic measurement/test data is a key element in this structure. The major requirement is to
show that the processing and entire flow of this data has suitable integrity. Note that in the area
of legal metrology, the basic measurement data is converted into money (say, in a petrol pump)
and this therefore has the same status as the basic measurement data.

3 Risk factors

In this section, we undertake an analysis of a scientific instrument and its related software, the
purpose of which is to make an objective assessment of the likely risks associated with a software
error. For a general discussion on risk, see [9].

The first step in undertaking the risk assessment is to characterise the instrument according to
aspects which influence the risk. Hence we list those aspects below.

Criticality of Usage. It is clear that the usage of some instruments is more critical than others.
For instance, a medical instrument could be critical to the well-being of a patient. On the
other hand, a device to measure noise intensity is probably less critical.

To make an objective assessment of the level of criticality of usage, we need a scale which
we give in increasing criticality as: critical, business-critical, potentially life-critical
and life-critical. (The assumption in using this Guide is that some degree of criticality is
involved.)

One of the major problems in this area is that a supplier may well be unaware of the
criticality of the application. The user may well assume that the instrument is suitable for
highly critical applications, while the supplier may well prefer to exclude such usage. For
an example of this problem see Buyer beware! on page 22.

Legal requirements. Several instruments are used in contexts for which there are specific
legal requirements, such as with the WELMEC guide [32]. In this context, an instrument
malfunction could have serious consequences.

To make an assessment, one clearly needs to know if there are any specific legal
requirements for the instrument and have a reference to these. (It may be necessary to
check what current legislation applies.)

Complexity of control. The control function of the software can range from being almost
non-existent to having substantial complexity. Aspects of the control will be visible to
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the operator in those cases in which operator options are available. Some control may be
invisible, such as a built-in test function to help detect any hardware malfunction.

Many aspects of control are to make the device simpler to use, and protect the
operator against misuse which might be feasible otherwise. This type of control is clearly
highly advantageous, but it may be unclear if any error in its operating software could pro-
duce a false reading. Hence aspects of the complexity of the user-instrument interface are
considered here.

Very simple. An example of a very simple control is when the instrument detects if there
is a specimen in place, either by means of a separate detector, or from the basic
data measurement reading. The result of this detection is to produce a more helpful
display read-out.

Simple. An example here might be temperature control which is undertaken so that
temperature variation cannot affect the basic measurement data.

Modest. An example of modest complexity arises if the instrument takes the operator
through a number of stages, ensuring that each stage is satisfactorily complete
before the next is started. This control can have an indirect effect upon the basic
test/measurement data, or a software error could have a significant effect upon that
data.

Complex. An example of complex control is when the software contributes directly to the
functionality of the instrument. For instance, if the instrument moves the specimen,
and these movements are software controlled and have a direct bearing upon the
measurement/test results.

Complexity of processing of data. In this context, we are concerned with the processing of the
raw data from the basic instrument (ie, the instrument without the software). In the case of
software embedded within the instrument itself, the raw data may not be externally visible.
This clearly presents a problem for any independent assessment; however, it should be the
case that the nature of the raw data is clear and that the form of processing is well-defined.
Calibration during manufacture would typically allow for ‘raw data’ to be displayed in
appropriate units. (Subsequent to the calibration during manufacture, the raw data may not
be available to the user.)

Very simple. In this case, the processing is a linear transformation of the raw data only,
and with no adjustable calibration taking place.

Simple. Simple non-linear correction terms can be applied here, together with the
application of calibration data. A typical example is the application of a small quadratic
correction term to a nearly linear instrument which is undertaken to obtain a higher
accuracy of measurement.

Modest. Well-known published algorithms are applied to the raw data.

The assumption here is that the algorithms used are numerically stable. For an
example of a problem that can arise in this area, see Numerical instability on page 21.

9
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Complex. Anything else.

A risk assessment must be based upon the visible information. Some complex devices may
internally record information which is difficult or impossible access. Examples of such
information is the selection of operator options, or low-level data within a complex system. For
programmable instruments, it should be possible to reconstruct the program from a listing, and
repeat the execution from the data recorded from a prior execution.

4 Integrity assessment

At this stage, we are looking at the instrument as a black box but assuming that some questions
can be asked (and answered) which might not be directly apparent from the instrument. The
underlying reasoning behind the questions is to assess the affects of the risk factors involved. If
some key questions can not be answered, then clearly any assessment must be incomplete.

The first part is to go through the previous section of this Guide and characterise the instrument
in terms of all the parameters mentioned there.

We now have a set of additional issues to resolve as follows:

1. What degree of confidence can be obtained in the instrument merely by performing ‘end-
to-end’ tests, i.e, using the instrument with specimens of known characteristics? (Note that
this type of testing is distinct from conventional black-box testing of the software since the
software is only exercised in conjunction with the basic instrument.) Such tests just regard
the entire instrument as a black-box and effectively ignores that software is involved. To
answer this leading question you need to take into account the risk factors noted above.
For instance, if complex software is being used which uses unpublished algorithms, then
high confidence cannot be established.

2. In the case in which the processing of the basic data is modest or complex, can the raw
data be extracted so that an independent check on the software can be applied?

3. Has essentially the same software for the data processing been applied to a similar
instrument for which reliability data is available? (Note that there is a degree of
subjective judgement here which implies that the question should be considered by
someone who is suitably qualified.)

4. For this instrument, is there a record available of all software errors located? Under what
terms, if any, can this information be made available?

5. To what extent can the complexity in the control software result in false measurement/test
data being produced?

6. If the operator interface is complex, can this be assessed against the documentation? How
important is operator training in this?

10
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At this point, sufficient information should be available to make an assessment of the integrity
required of the software taking into account all the factors above including the target risk to be
taken. This assessment should be as objective as possible, but is bound to have a modest degree
of subjectivity. If answering the six questions above is straightforward, raising no problems, then
the Software Integrity Level is the same as the complexity of the data processing above. Hence,
unless answering the above questions reveals additional problems, very simple complexity of
data processing would have a Software Integrity Level of 1.

Thus classify the result of this process as follows:

Software Integrity Level 1. The data processing software is very simple. No significant
problems or risks were revealed in the analysis. The control software had no impact on the
measurement data.

Software Integrity Level 2. The data processing software is simple or some problems or risks
were encountered and the processing was very simple. The impact of the control software
was clear.

Software Integrity Level 3. There is at least one major unquantifiable aspect to the software.
This could be an inability to check the software since there is no facility to provide the raw
data (combined with complex processing). Another possibility might be that the control
software influences the basic measurement/test data in ways that cannot be quantified.

Software Integrity Level 4. Here we either have complex processing which is difficult to
validate, or processing of modest complexity with significant additional problems (or
both!).

As the software integrity level increases, so should the risk of errors be reduced due to the
application of more rigorous software engineering techniques, which is the topic of the next
section.

4.1 Computing the software integrity level

It has been suggested that there should be an algorithm for computing the software integrity level
from the information which is requested in the last two sections. Each key factor is on a 4-point
scale, as is the resulting software integrity level. Hence one possibility is:

Software Integrity Level = max(Usage, Control, Processing) levels.

This suggestion has not been developed further since it seems to be difficult to take into account
all the factors necessary. For instance, even the maximum function above is not quite correct
since the complexity in the control function could be off-set by other factors.

On balance, it seems more appropriate for the factors to be determined, the check lists used, and
then a subjective judgement made (which could well be based upon the formula above). The
important aspect is to show how, and on what basis, the software integrity level was determined.
Some alternative methods are given in [12].

11
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5 Software development practice

The starting point here is that the software development process being used should have a rigour
to match the software integrity level. This is the approach taken in several safety-critical software
standards [12, 25].

For any software integrity level, basic practices must be established which could be a direct
consequence of the application of ISO 9001 to software [17, 18] or from the application of
other standards. It can be claimed that ISO 9001 itself requires the application of appropriate
(unspecified) software engineering techniques, especially for the higher levels of integrity. How-
ever, even ISO 9000-3 does not even mention many such techniques and hence we take the
view that specific techniques should be recommended here, rather than depend upon the general
requirements of ISO 9001. In the pharmaceutical sector, specific guidance has been produced
which is effectively a version of ISO 9000-3 oriented to that sector [7].

Theoretically, it is possible to undertake the testing of software to establish the actual reliability
of the software. However, there are strict limits to what can be achieved in this area [22], and
hence the approach taken here is the conventional one of examining the software development
process. In practical terms, software testing is expensive, and hence the most cost-effective
solution uses other methods in addition to gain confidence in the software.

In the UK, it is reasonable to expect suppliers to be registered to ISO 9001, which in the case
of software implies the application of TickIT. If a supplier is not registered, then one lacks an
independent audit on their quality system.

ISO 9001 provides a basic standard for quality management, whereas in practice, companies
will continually improve their system if the aim is high quality. In any case, improvements in
the light of experience are essentially a requirement of ISO 9001. The standard implies a defined
life-cycle which is elaborated in [21]. For those companies not formally registered to ISO 9001,
we assume that a similar quality management approach is used.

The application of a quality management system to software should imply that a number of
technical issues have been addressed and documented and that the following requirements are
met:

1. There should be documents demonstrating that a number of issues have been covered such
as: design, test planning, acceptance, etc. The acceptance testing should ensure that the
operator interaction issues have been handled and validated.

2. A detailed functional specification should exist. Such a specification should be sufficient
to undertake the coding. This level of information is typically confidential to the developer.

3. There should be a fault reporting mechanism supported by appropriate means of repairing
bugs in the software.

4. The software should be under configuration control [27]. This implies that either the
software should itself include the version number, or the version can be derived from other

12
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information, such as the serial number of the device. In the case of free-standing software,
it should be possible for users to determine the version number.

Software Integrity Level | Recommended techniques

2 Software inspection(C.1), Mathematical specification(C.7)
Structural testing(C.2), System testing(C.5)
3 Regression testing(C.3), Equivalence partition testing(C.2)

Independent audit(C.9), Numerical stability(C.6)
Stress testing(C.10), Reference test sets(C.12)

4 Statement testing(C.2), Formal specification(C.8)
Static analysis(C.11), Accredited testing(C.4)
Back-to-back testing(C.13)

Table 1: Recommended techniques

We assume that these requirements are met, whatever software integrity level is to be addressed
by the software.

For Software Integrity Level 1, the above requirements are recommended. For the higher
software integrity levels, a recommendation for level # also applies to any higher level. In Table 1,
we list the recommended techniques, which are all defined in Appendix C. Note that Statement
testing, Equivalence partition testing, and Structural testing are all (software) component test
methods.

The fact that a technique is recommended at a specific level does not (in general) imply that
not applying the method would imply poor practice or that all the methods should be applied.
For instance, the example given under Accredited testing C.4, is a good choice precisely because
other strong methods are not effective. Any design should involve a trade-off between the various
relevant methods.

6 Conclusions

The attempt to answer the two questions posed at the beginning of the Guide is limited by the
information available. One must accept that the user of an instrument may not be able to obtain
information from the supplier to determine if appropriate software engineering practices have
been used.

At this point, no consultation has taken place with instrument suppliers, so it is unclear if this
Guide reflects current practice, although it is based upon both established software engineering
methods and information from appropriate standards.

Many useful comments were obtained on the first draft of this Guide. Every attempt has been
taken to reconcile the comments in this edition.
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Check lists

The check lists below ask key questions concerning the substance of this Guide. It is not usually
possible to answer them with a simple yes/no. If any question is unclear, the main text of the
Guide should be referred to.

In some cases, the check list questions do not relate to the larger issues discussed in the main
text, but to lesser issues which are known to have caused problems in the past.

Al

1.

0 X N Nk

10.
11.
12.
13.
14.
15.
16.
17.

Risk factors

What is the criticality of usage? (critical/business-critical/ potentially life-critical/life-
critical).

Is the supplier aware of the criticality of your application?

Are there specific legal requirements for the instrument?

What are the consequences of an instrument malfunction?

Is independent evidence needed of the software development process?

Does the instrument require regulatory approval?

What is the complexity of control? (very simple/simple/ modest/complex).

Does the instrument perform built-in testing?

Do the control functions protect the operator from making specific errors?

Can an error in the control software cause an error in the basic test/measurement data?
Is the raw data available from the instrument?

Does the instrument contain local data, such as that derived from the last calibration?
Is the processing of the raw data strictly linear?

Is the processing of the raw data a simple non-linear correction?

Is the processing of the data restricted to published algorithms?

Have the algorithms in use been checked for numerical stability?

Would a numerical error, such as division by zero, be detected by the software, or would
erroneous results be produced? This will typically depend upon the programming system
used to produce the software, and can vary from no detection of such errors to elaborate
indications of the exact point of failure. If no internal checks are applied, there is a greater
risk of a programming error resulting in erroneous results.
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A2

1.

10.

11.

A3

Integrity assessment

What information is available from the instrument supplier or developer of the software?

. What confidence can be gained in the software by end-to-end tests on the instrument?

. Can the raw data be extracted from the instrument?

Can the raw data be processed independently from the instrument to give an independent
check on the software?

. Are software reliability figures available for an instrument using similar software (ie,

produced by the same supplier)?
Is a log available of all software errors? Has this log been inspected for serious errors?
Does the control function have a direct effect on the basic test/measurement data?

Has an assessment been made of the control software against the operating manual? If so,
by whom?

Do operators of the instrument require formal training?

Have all the answers to the questions above in this list been taken into account in
determining the software integrity level?

Has a list been made of all the unquantifiable aspects of the software?

Software development practice

These lists are increasing in complexity. Since the requirements at level » imply those at level
n-1, all the questions should be asked up to the level required.

A.3.1 Software Integrity Level 1

1

0

N o AW

18

Is there design documentation?

Is there evidence of test planning?

Is there a test acceptance procedure?

Is there an error log?

What evidence is there of clearance of errors?
Is there a detailed functional specification?

Are security, usability and performance aspects covered in the specification?



10.

11.

12.

13.

14.
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How is configuration control managed?

Is there a defined life-cycle?

How can the user determine the version number of the software?

What steps have been taken to ensure there is no problem at the millennium change?

Have all changes to: hardware platform, operating system, compiler, added functionality
been checked?

Have all corrections been checked according to the defined procedures?

Have all the staff the necessary skills, and are these documented?

A.3.2 Software Integrity Level 2

1.

10.

11.

Is software inspection used on the project? If so, to what documents has it been applied
and what was the estimated remaining fault rate?

What alternatives have been used if software inspection was not applied?

Has a mathematical specification been produced of the main algorithms used for processing
the test/measurement data?

Is the processing code derived directly from the mathematical specification?

. What form of structural testing has been applied, and what metrics of the level of testing

have been produced?

What level of testing has been applied to the control and processing components of the
software?

How has the completeness of the system testing been assessed?

. Has the system testing covered all reasonable misuses of the instrument?

. What records are available on the system tests?

Are the security features consistent with any regulations or intended use?

Are the test strategies, cases, and test completion criteria sufficient to determine that the
software meets its requirements?
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A.3.3 Software Integrity Level 3

1. Is regression testing applied? If so, at what point in the development did it start?

2. For what components has equivalent partition testing been applied? Has the technique
been applied to the components processing the basic test/measurement data?

3. Has an independent audit been undertaken? Have all problems identified been resolved?
Did the audit apply to the basic quality management system or to the software techniques
as well?

4. Has the numerical stability of the main measurement/data processing routines been checked?
Has the rounding error analysis been taken into account in formulating the mathematical
specification of the routines?

5. Has stress testing been applied to the software? To what extent have the limits of the
software been assessed by this testing? Has the stress testing revealed weaknesses in the
system testing?

6. Have activities been undertaken in the development which are not auditable (say, no written
records)?

7. Are known remaining software bugs documented? Are they adequately communicated to
the user?

8. What methods have been applied to ensure that structural decay is avoided? (See Appendix
B.3))

A.3.4 Software Integrity Level 4

1. To what components has statement testing been applied? What coverage was obtained?

2. Has a Formal Specification been produced of any of the software components? Has this
revealed weaknesses in the functional specification, testing, etc.? Is it possible to derive an
executable prototype from this specification to validate the equivalence partition testing?

3. What forms of static analysis have been undertaken?

4. Does accredited testing have a role in gaining confidence in the software? If a test suite is
used for accredited testing, have all the results of other forms of testing been fed into this?

5. Is beta site testing undertaken?

6. Is memory utilization testing undertaken, or can it be shown that such testing is not needed?
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B Some example problems

A number of illustrative examples are collected here of problems that have been reported to NPL
over a number of years. The exact sources are deliberately not given, even when they are known.

B.1 Software is non-linear

A simple measuring device was being enhanced to have a digital display. This was controlled
by an embedded microprocessor, with the code produced in assembler. The product was then to
be subjected to an independent test. The testers discovered, almost by accident, that when the
device should have displayed 10.000 exactly, the actual display was nonsense. The fault was
traced to the use of the wrong relational operator in the machine code.

The example contrasts with pre-digital methods of recording measurements in which the record
is necessarily linear (or very nearly linear).

The example illustrates that the testing of software should include boundary conditions.
However, only the most demanding standards actually require that such conditions are tested.
For a four-digit display in this example, it should be possible to cycle through all the possible
outputs to detect the error.

B.2 Numerical instability

The repeatability standard deviation of a weighing balance was required as part of a reference
material uncertainty estimate. Successive weighings of a nominal 50 gram weight produced a set
of fifteen replicate values as follows: 49.9999 (1 occurrence), 50.0000 (5 occurrences), 50.0001
(8 occurrences) and 50.0002 (1 occurrence).

The processing of the data used an in-built “standard deviation” function operating to single
precision (eight significant figures). Because the data could be represented using six significant
figures, the user anticipated no difficulties. The value returned by the function, however, was
identically zero.

The reason is that the function implements a “one-pass” algorithm that, although fast to execute,
is numerically unstable. The standard deviation computation in this algorithm is based on a
formula involving the difference between quantities which are very close for the above data
values, thus causing the loss of many figures. An alternative “two-pass” algorithm that first
centres the data about the arithmetic mean and then calculates the standard deviation returns an
answer for the above data that is correct to all figures expected. Unfortunately, the “one-pass”
algorithm is widespread in its use in pocket calculators and spreadsheet software packages.

The example described above is concerned with the stability of the algorithm chosen for the
required data processing. Numerical difficulties may also arise from the improper application of
good algorithms. In one example, the processing software was to be ported from one (mainframe)
platform to another (PC) platform. Although the platforms operated to similar precisions, and
the same numerically stable algorithm was used (albeit coded in different languages), the results
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of the processing agreed to only a small number of significant figures. The reason was that the
linear systems being solved were badly scaled and, therefore, inherently ill-conditioned, i.e., the
solution unnecessarily depended in a very sensitive way on the problem data.

The lessons of this are: ensure the required data processing is stated as a well-posed problem;
then use a stable algorithm to solve the problem.

B.3 Structural decay

A contractor is used to develop some software. They have very high coding standards which
include writing detailed flow diagrams for the software before the coding is undertaken. The
contractor corrects these diagrams to reflect the actual code before delivery to the customer. It is
satisfactory to use flow charts to generate a program. But once the program is written, these charts
become history (or fiction), and only charts generated from the program source are trustworthy.

The customer has tight deadlines on performing modifications to the software over the
subsequent five years. For the first two amendments, the flow diagrams were carefully up-
dated to reflect the changes to the code, but after that, no changes were made so that the flow
diagrams were effectively useless. As aresult, the overall ‘design’ provided by the contractor was
effectively lost. The problem was that the ‘design’ was not captured in a form that could be easily
maintained.

The conclusion from this is that for programs which have a long life, one must be careful to
capture the design in a format that can be maintained. Hence it is much better to use design
methods which support easy maintenance — hand-written flow charts are exactly what is not
needed!

A more serious example of the same aspect is the use of programming languages which do not
support high-level abstraction, for instance C as opposed to C++.

B.4 Buyer beware!

Professor W Kahn is a well-known numerical analyst who has also tested many calculators over
many years. Several years ago, he illustrated an error in one calculator in the following manner:
assume the calculator is used to compute the route to be taken by an aircraft in flying between
two American cities, then the error in the computation would result in the aircraft flying into a
specific mountain.

Modern calculators are cheap and usually reliable. However, errors do occur. Hence the use of
such an instrument in life-critical applications needs serious consideration. If the same
calculations were being performed by software within the aircraft, then the very demanding
avionics standard would apply [25]. Hence, when used for a life-critical application the same
level of assurance should be provided by the calculator (however, it probably would not be
cheap).
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C Recommended software engineering techniques

Here we list specific recommended techniques. These are either defined here, or an appropriate
reference given. A good general reference to software engineering is [23].

C.1 Software inspection

This technique is a formal process of reviewing the development of an output document from an
input document. It is sometimes referred to as Fagan inspection. An input document could be
the functional specification of a software component, and the output document the coding. An
excellent book giving details of the method and its practical application is given in [8].

The method is not universally applied, but many organisations apply it with great success. It
tends to be applied if the organisation has accepted it and endorses its benefits.

C.2 Component testing

This is a basic software engineering technique which can (and should) be quantified. The
software component to which the method is applied is the smallest item of software with a
separate specification (sometimes called a module). It is very rare for the technique not to be
applicable for a software development. The best standard, which is now available through BSI,
is the British Computer Society standard [1].

The BCS standard allows for many levels of testing and in this Guide we select four levels as
follows:

Structural testing. Several forms of structural testing defined in the standard, but not to any
specified level. In this context, we specify branch testing with 50% coverage.

Equivalence partition testing. Undertaking this to 100% coverage. This is complete functional
testing at the component level. This is to be applied to those components handling the basic
measurement/test data.

Statement testing. Undertaking 100% statement coverage for those components handling the
basic measurement/test data. If a statement has not been executed, then a reason for this
should be documented. Defensive programming techniques and detection of hardware
malfunction gives rise to statements that cannot be executed (but are quite acceptable).

Boundary value testing. In this case, which can be seen as an addition to equivalence partition
testing, values are chosen which lie of the boundary between partitions. This form of
testing is designed to show that the boundary cases themselves are correctly handled.
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C.3 Regression testing

This technique requires that tests are developed and used to re-test the software whenever a
change is made. Typically, sometime before the first release, a set of tests will be designed and
run on the software. From that point on, all errors located should result in an addition to the set
of tests of an example which would detect the bug.

To be effective, one needs a method of re-running the set of tests automatically. The technique
is very good for software that is widely used and for which initial bugs are not a major problem.
The effect of the method is that subsequent releases of software should be very reliable on the
unextended facilities.

C.4 Accredited testing using a validation suite

This technique requires that a set of tests be developed (the validation suite) against which the
software can be tested. This is appropriate for software having an agreed detailed specification,
such as compilers and communication software. Accredited testing ensures that the tests are run
and the result interpreted correctly, with the specific requirements of objectivity, repeatability
and reproducibility.

The method is significantly stronger if the set of tests is updated regularly by means of regression
analysis. This implies that errors in any implementation will result in tests being applied to all
(validated) systems.

This form of testing provides an ideal basis for certification.

An example of this form of testing for a scientific ‘instrument’ is that being proposed in the
area of Nuclear Medicine [2]. Here, gamma-camera pictures are taken of patients when being
treated with substances containing radio-active trace elements. The camera output is translated
into a standard file format, but the difficult numerical part is the analysis of the picture to give the
basic information for a medical diagnosis. Other strong methods, such as a mathematical spec-
ification cannot be applied, and hence this method provides a means for the whole international
Nuclear Medicine community to gain confidence in analysis software. Note that the applica-
tion is potentially life-critical and the complexity of the processing of data is complex which
implies a high software integrity level, say 3. At this level, the technique of accredited testing
is not actually recommended (see Table 1 on page 13), but it is one of the few methods which
can provide reasonable assurance in this context. This method is made more effective by means
of software phantoms which are pictures for whom an agreed diagnosis is available (at least in
the cardiac and renal areas), as explained in the reference above.

C.5 System-level functional testing

This technique is based upon testing the entire software as a black box by a careful examination
of the functionality specified and ensuring that every aspect of the functionality is tested. An ISO
standard is based upon application of this test method [20].
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C.6 Numerical stability

It is unreasonable to expect even software of the highest quality to deliver results to the full
accuracy indicated by the computational precision. This would only in general be possible for
(some) problems that are perfectly conditioned, i.e., problems for which a small change in the
data makes a comparably small change in the results. Problems regularly arise in which the
conditioning is significant and for which no algorithm, however good, can provide results to the
accuracy obtainable for well-conditioned problems. A good algorithm, i.e., one that is numer-
ically stable, can be expected to provide results at or within the limitations of the conditioning
of the problem. A poor algorithm can exacerbate the effects of natural ill-conditioning, with the
consequence that the results are poorer than those for a good algorithm.

Software used in scientific disciplines can be unreliable because it implements numerical
algorithms that are unstable or not robust. Some of the reasons for such failings are:

1. failure to scale, translate, normalise or otherwise transform the input data appropriately
before solution (and to perform the inverse operation if necessary following solution),

2. the use of an unstable parametrisation of the problem,

3. the use of a solution process that exacerbates the inherent (natural) ill-conditioning of the
problem,

4. a poor choice of formula from a set of mathematically (but not numerically) equivalent
forms.

The development of algorithms that are numerically stable is a difficult task, and one that should
be undertaken with guidance from a numerical analyst or someone with suitable training and
experience. It requires that the intended data processing is posed sensibly and, if ‘off-the-shelf’
software modules are used, that such software is appropriate.

There are established high-quality libraries of numerical software that have been developed over
many man-years and cover a wide range of computational problems. Examples include the NAG
library [37] (which is available in a number of computer languages and for a variety of platforms),
LINPACK [38], and NPL libraries for data approximation [39] and numerical optimisation.

C.7 Mathematical specification

Such a specification gives the output data values as a function of the input data values. This
method is suitable for the simpler processing of basic measurement data, and should clearly be
expected. The mathematical function may well not be the way the actual output is computed, for
instance, the specification may use the inverse of a matrix, while the results are actually computed
by Gaussian elimination. This method should avoid a common error of not specifying the exact
effect of the end of a range of values. It is not easy to apply the method to digital images (say),
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since the algorithms applied are quite complex so that any ‘complete’ specification is likely to
be very similar to the software itself.

The mathematical specification needs to be validated against the underlying physics. This
includes establishing that the model describes the system sufficiently well and ensuring that the
errors introduced by the system are fully understood.

C.8 Formal specification

Several methods are available for providing a specification in a completely formal way which
can handle most functional aspects of a specification. The best known methods are VDM [3] and
Z [31]. For the author’s personal views of this method, see [34].

C.9 Independent audit

In the UK, independent audit to ISO 9001 is widely established. This provides evidence to
third parties of a software integrity level of 1. It would not require that the stronger (and more
expensive) techniques are applied, nor that the recommendations here are applied. In
consequence, auditing to comply with the other standards mentioned in section 2.1 would be
better.

C.10 Stress testing

This testing technique involves producing test cases which are more complex and demanding
than are likely to arise in practice. It has been applied to testing compilers and other complex
software with good results. The best results are obtained when the results can be automatically
analysed.

For a paper on this method, see [36].

C.11 Static analysis/predictable execution

This technique determines properties of the software primarily without execution. One
specific property is of key interest: to show that all possible executions are predictable, i.e,
determined from the semantics of the high level programming language in use. Often, software
tools are used to assist in the analysis, typically using the programming language source text
as input. In general, the analysis techniques employed can be very minor (say, all variables are
explicitly declared), or very strong (formal proof of correctness), but the goal of showing
predictable execution should be cost-effective for high integrity software.

For a general discussion on static analysis, see [35].
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C.12 Reference test sets

There is a growing need to ensure that software used by scientists is fit for purpose and
especially that the results it produces are correct, to within a prescribed accuracy, for the
problems purportedly solved. Methodologies, such as that presented in [33], have been
developed to this end. The basis of the approach is the design and use of reference data sets
and corresponding reference results to undertake black-box testing.

The approach allows for reference data sets and results to be generated in a manner that is
consistent with the functional specification of the problem addressed by the software. In
addition, data sets corresponding to problems with various ‘degrees of difficulty’ or condition
(section C.6), and with application-specific properties, may be produced. The comparison of
the test and reference results is made objective by the use of quality metrics. The results of the
comparison are then used to assess the degree of correctness of the algorithm, i.e., the quality of
the underlying mathematical procedure and its implementation, as well as its fitness-for-purpose
in the user’s application.

The methodology has been applied successfully in particular areas of metrology. In dimensional
metrology, for example, coordinate measuring machines (CMMs) are typically provided with
software for least-squares (Gaussian) geometric element fitting. The methodology provides the
basis of an ISO Standard [40] for testing such software, and it is intended to base a testing service
on this Standard. Data sets have been developed in such a way that the corresponding reference
results are known a priori. Consequently, there is no reliance on reference implementations of
software to solve the computational problems, but the generation of the data sets is dependent on
a set of simpler ‘core’ numerical tasks that are well understood.

C.13 Back-to-back testing

In this form of testing two comparable software systems are tested with the same input. The
output from each test is then compared — identical results are not usually expected when
numerical testing is undertaken.

If the comparison can be automated, then it may be possible to run a large number of tests thus
giving a high assurance that the two items produce similar results. Of course, one of the items
under test is likely to be a version of known characteristics, while to other is the item being
assessed.

In the SMART reliability study[4], this form of testing was used by testing a MatLab implemen-
tation against the C code within the instrument. The test cases used were those derived from
boundary value/equivalence partition testing.

This form of testing can also be applied at a higher level than just a single software component.
Indeed, the standard method of calibrating instruments can be seen as a back-to-back test of a
trusted instrument against one to be calibrated.
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D Background to this Guide

This Guide has been produced under the NMSPU programme that NPL has agreed with the
Department of Trade and Industry whose support in acknowledged.

The author is a software engineer rather than an expert on scientific instruments. Hence several
NPL staff have been asked to comment on drafts of the Guide.

Every attempt has been made to produce the Guide from existing material. However, nothing
was found in the literature which matched the requirements. Reference has not been made to the
ISO generic standard on software quality [19], since it has no requirements.

This revision of the Guide has been undertaken with the requirements for the Measurement
System Validation activities of the Software Support for Metrology (SSfM) programme in mind.
The SSfM programme is much broader than the objectives of this Guide and will produce
corresponding reports in due course. However, additions to this Guide have been made in those
areas consistent with the narrower objectives of the Competing Precisely guides.

E Comments

To comment on this Guide, please give precise details of the issue.
They can be sent by a variety of means, which in order of preference are:

1. e-mail to brian.wichmann@npl.co.uk
2. Fax to 020-8977 7091 marked for the attention of Brian Wichmann

3. by post to Brian Wichmann at the address on the title page.
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