Magnetosensing Applications with Submicron Size Epitaxial Graphene Devices

V. Panchal1,2, K. Cedergren3, R. Yakimova4, A. Tzalenchuk1, S. Kubatkin5 and O. Kazakova6

1. Introduction

- Semiconductor Hall effect devices have been successfully used for:
 - Industrial applications
 - Fundamental research
- Ideal for bead detection due to:
 - Use of DC magnetic field

2. Fabrication

- Graphene is epitaxially grown on 4H-SiC (0001) substrate
- Standard e-beam lithography to define:
 - Bonding pads and leads
 - Hall bars
- Oxygen plasma
- Used to etch graphene

3. Characterisation

- Hall coefficient determined by sweeping magnetic field.
- Noise level at finite bias current:
 - Johnson-Nyquist noise
- Noise level at zero bias current:
 - 2-terminal resistance

4. Conclusion

- We demonstrated epitaxial graphene magnetometers with:
 - Room temperature Hall coefficient approaching that of InSb devices
 - Order of magnitude better magnetic field sensitivity
 - Devices ≥ 1 μm are more sensitive than smaller devices due to higher resistance
 - Epitaxial graphene fabrication readily compatible with Si electronic processing

5. Acknowledgements

This work has been developed under the EU FP7 Project JRP IND 11 Metrology for Advanced Industrial Magnetics (MetMags)

6. References