Proton beams exhibit better dose characteristics than x-rays for radiotherapy. Proton therapy is not new but has become much cheaper in the last decade. Emerging new accelerator technologies such as laser-induced beams, dielectric wall accelerators and fixed field alternating gradient accelerators promise a further lowering of costs for proton therapy. The NHS has committed £250M for two high-energy proton therapy facilities. In order to make the most out of this modality (highest treatment outcome with minimal side effects) dosimetric accuracy similar to x-ray therapy is required and improved reference dosimetry is needed.

Key Achievements

- World's first graphite calorimeter for reference dosimetry of therapeutic proton beams, prospect of world's first primary standard for proton dosimetry.
- Characterisation of alanine as a reference dosimeter and mailed audit tool for proton dosimetry.
- Calculation and measurement of ionisation chamber perturbation factors.
- Developed Monte Carlo simulation capabilities using the PTRAN, MCNPX, GEANT4 and FLUKA codes.
- New research program on novel SQUID-based detector development for microdosimetry of ion beams.

Aims

- Establish primary standards for proton dosimetry.
- Improve reference dosimetry.
- Establish correction factors for ionisation chambers.
- Establish energy-response relationships for alanine and radiochromic film and propose procedures to correct measurements with these dosimeters.
- Characterise the water-equivalence of phantom materials and tissue substitutes.
- Define new quantities accounting with the stochastic distribution of energy deposition at the micro- and nano-scale.
- Support dosimetry for proton therapy in UK & abroad.

Collaborations

- Clatterbridge Cancer Centre, Wirral, UK
- University of Surrey, Guildford, UK
- University of Birmingham, UK
- University College of London, UK
- University of Liverpool, UK
- University of Århus, Denmark
- University of Stockholm, Sweden
- University of Vienna, Austria
- Université catholique de Louvain, Belgium
- Ion Beam Applications (IBA), Belgium
- German Cancer Research Institute, Heidelberg, Germany
- MedAustron, Wiener Neustadt, Austria
- Slovak Institute of Metrology, Slovakia
- International Atomic Energy Agency, Vienna, Austria

Advantage of proton therapy

Below: Blue and green curves show depth dose curves for two opposing beams of a radius (left) and proton spread-out Bragg peaks (right). The sum in red shows that for the same target dose protons deliver much smaller doses outside the target region (delimited by dashed lines).

Methods

- Development and characterisation/correction factors, heat transfer, dose to graphite to dose-to-water conversion, graphite calorimeters for proton dosimetry.
- Measurement of relative response of suitable detectors.
- Measurement of energy-response relationships of ionisation chambers on recombination, alanine dosimeters and radiochromic film dosimeters.
- Monte Carlo simulations of beam-maps and beam output.
- Monte Carlo simulations of detector perturbation/correction factors.
- Cavity theory for ionisation chambers.
- Adapting methods for high-dose per pulse regimes (e.g. from laser induced particle beams).
- Design, development and Monte Carlo simulations of SQUID based dosimeters.

Funding

- SR-ER project on microbolometry and ROS probes for gold nanoparticles enhanced radiotherapy and SR UoS doctoral.
- NMS.
- EMRP - JRP7, MetrExtRT, BioQuaRT.
- SR-ER project on microbolometry and ROS probes for gold nanoparticles enhanced radiotherapy.
- NIHR i4i projects on microbolometry.

Publications

1. A. Lühr, ... H. Palmans, S. Rossomme and N. Bassler, "Fluence correction factors and stopping power ratios for clinical ion beams" Acta Oncol. 50(6) 797-805, 2011.
11. A. Lühr, ... , H. Palmans, S. Rossomme and N. Bassler, "Fluence correction factors and stopping power ratios for clinical ion beams" Acta Oncol. 50(6) 797-805, 2011.
17. A. Lühr, ... , H. Palmans, S. Rossomme and N. Bassler, "Fluence correction factors and stopping power ratios for clinical ion beams" Acta Oncol. 50(6) 797-805, 2011.